1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
|
{
"metadata": {
"name": "",
"signature": "sha256:6111670c8f96effbf1bc0bc29859353d67e53cd5b906d2b571173d1698f7ba9c"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter07:Lateral earth pressure"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex7.1:Pg-319"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#example 7.1\n",
"\n",
"sigmao=48.0; # in KN/m^2\n",
"phi1=30*math.pi/180; # angle\n",
"phi2=36*math.pi/180; # angle\n",
"Ka1=(math.tan(math.pi/4.0-phi1/2))**2;\n",
"Ka2=(math.tan(math.pi/4.0-phi2/2))**2;\n",
"sigmaa1=Ka1*sigmao; # in KN/m^2\n",
"print round(sigmaa1,2),\"top soil pressure in kN/m**2\"\n",
"sigmaa2=Ka2*sigmao; # in KN/m^2\n",
"print round(sigmaa2,2),\"bottom soil pressure in kN/m**2\"\n",
"Po=1/2.0*3*16+3*12.48+1/3.0*3*(19.65-12.48)+1/2.0*3*29.43;\n",
"zbar=(24*(3+3/3.0)+37.44*(3/2.0)+10.76*3/3.0+44.1*3/3.0)/Po;\n",
"print round(zbar,2),\"resultant force acting from the bottom in m\"\n",
"\n",
"# The answers in the book are different due to approximation while here calculations are precise"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"16.0 top soil pressure in kN/m**2\n",
"12.46 bottom soil pressure in kN/m**2\n",
"1.84 resultant force acting from the bottom in m\n"
]
}
],
"prompt_number": 34
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex7.2:Pg-321"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#example 7.2\n",
"\n",
"import math\n",
"c=14.36;\n",
"Gamma=17.4; # in KN/m^3\n",
"H=6; # in m\n",
"phi=26*math.pi/180;\n",
"Ka=(math.tan(math.pi/4-phi/2))**2;\n",
"sigma0=Gamma*H*Ka-2*c*math.sqrt(Ka);\n",
"Pa=1/2.0*Gamma*H**2*Ka-2*c*H*math.sqrt(Ka);\n",
"print round(Pa,2),\"active force before which tensile crack appeared in kN/m\"\n",
"zbar=(244.32-323.1)/14.46;\n",
"print round(zbar,2),\"the line of action on which net force is acting in m\"\n",
"zc=2*c/Gamma/math.sqrt(Ka);\n",
"print round(zc,2),\"distance where tensile crack appeared in m\"\n",
"Pa=1/2.0*(H-zc)*(Gamma*H*Ka-2*c*math.sqrt(Ka));\n",
"print round(Pa,2),\"Active force in tensile crack in kN/m\"\n",
"zbar=(H-zc)/3;\n",
"print round(zbar,2),\"the line of action on which net force is acting in m\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"14.62 active force before which tensile crack appeared in kN/m\n",
"-5.45 the line of action on which net force is acting in m\n",
"2.64 distance where tensile crack appeared in m\n",
"38.32 Active force in tensile crack in kN/m\n",
"1.12 the line of action on which net force is acting in m\n"
]
}
],
"prompt_number": 30
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex7.3:Pg-322"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#example 7.3\n",
"import math\n",
"pi=math.pi\n",
"H=10.0; # in ft\n",
"Gamma=110.0; # in lb/ft^3\n",
"phi=35*math.pi/180.0; # angle\n",
"alpha=15*math.pi/180.0; # angle\n",
"theta=10*math.pi/180.0; # angle\n",
"zi=math.sin(math.sin(alpha)/math.sin(phi))-alpha+2*theta;\n",
"print round(zi*180.0/math.pi,2),\" is zi in degrees\"\n",
"Ka=math.cos(alpha-theta)*math.sqrt(1+(math.sin(phi))**2-2*math.sin(phi)*math.sin(zi))/((math.cos(theta))**2*(math.cos(alpha)+math.sqrt((math.sin(phi))**2+((math.sin(alpha))**2))));\n",
"Pa=1/2.0*Gamma*H**2*Ka;\n",
"print round(Pa,2),\" is rankine earth pressure in lb/ft\"\n",
"print \"there is slight error in answer due to rounding off error\"\n",
"Beta=math.tan(math.sin(phi)*math.sin(zi)/(1-math.sin(phi)*math.cos(zi)));\n",
"print round(Beta*180/pi,2),\" is angle in degrees\"\n",
"\n",
"# The answers in the book are different due to approximation while here calculations are precise"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"29.99 is zi in degrees\n",
"3078.61 is rankine earth pressure in lb/ft\n",
"there is slight error in answer due to rounding off error\n",
"36.7 is angle in degrees\n"
]
}
],
"prompt_number": 25
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex7.4:Pg-326"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#example 7.4\n",
"\n",
"H=4.6; # in m\n",
"Gamma=16.5; # in KN/m^3\n",
"Ka=0.297;\n",
"Po=1/2.0*Gamma*H**2*Ka;\n",
"print round(Po,2),\"coulomb active force per unit length in kN/m\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"51.85 coulomb active force per unit length in kN/m\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex7.5:Pg-331"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#example 7.5\n",
"\n",
"#part(a)\n",
"Gamma=105; # in lb/ft^3\n",
"H=10; #in ft\n",
"Kae=0.474;\n",
"k1=0;\n",
"Pae=1/2.0*Gamma*H**2*Kae*(1-k1) # in lb/ft\n",
"print Pae,\"active force in lb/ft\"\n",
"#part(b)\n",
"Ka=0.246;\n",
"Pa=1/2.0*Gamma*H**2*Ka; # in lb/ft\n",
"print Pa,\"active force in lb/ft\"\n",
"DPae=Pae-Pa;#deltaPae\n",
"zbar=(0.6*H*DPae+H/3*(Pa))/Pae;\n",
"print round(zbar,2),\"the distance of resultant force from bottom in ft\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"2488.5 active force in lb/ft\n",
"1291.5 active force in lb/ft\n",
"4.44 the distance of resultant force from bottom in ft\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex7.6:Pg-337"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#example 7.6\n",
"\n",
"import math\n",
"import numpy\n",
"import matplotlib.pyplot as plt\n",
"\n",
"z=[0, 4, 8, 12, 16];\n",
"Gamma=110; # in lb/ft^3\n",
"phi=36*math.pi/180;\n",
"H=16; # in ft\n",
"Sa1=numpy.zeros(5);#sigma(1)\n",
"Sa2=numpy.zeros(5);#sigma(2)\n",
"Sztr=numpy.zeros(5);#sigma(z)translation\n",
"print \"z(ft)\\t sigma(1)(lb/ft**2) \\t sigma(2)(lb/ft**2) \\t sigma(z)translation (lb/ft**2)\\n\"\n",
"for i in range(0,5):\n",
" Sa1[i]=Gamma*(math.tan(math.pi/4-phi*z[i]/2/H))**2*(z[i]-phi*z[i]**2/H/math.cos(phi*z[i]/H));\n",
" Sa2[i]=Gamma*z[i]*(math.cos(phi)/(1+math.sin(phi)))**2;\n",
" Sztr[i]=Sa1[i]/2.0+Sa2[i]/2.0;\n",
" print round(z[i],2),\"\\t \",round(Sa1[i],2),\"\\t\\t\\t \",round(Sa2[i],2),\"\\t\\t\\t \",round(Sztr[i],2),\"\\n\"\n",
"plt.plot(Sztr,z);\n",
"plt.title(\"sigma(z)translation vs z\")\n",
"plt.ylabel(\"z(ft)\")\n",
"plt.xlabel(\"sigma(z)translation (lb/ft**2)\")\n",
"plt.show()\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"z(ft)\t sigma(1)(lb/ft**2) \t sigma(2)(lb/ft**2) \t sigma(z)translation (lb/ft**2)\n",
"\n",
"0.0 \t 0.0 \t\t\t 0.0 \t\t\t 0.0 \n",
"\n",
"4.0 \t 269.92 \t\t\t 114.23 \t\t\t 192.07 \n",
"\n",
"8.0 \t 311.08 \t\t\t 228.46 \t\t\t 269.77 \n",
"\n",
"12.0 \t 233.53 \t\t\t 342.69 \t\t\t 288.11 \n",
"\n",
"16.0 \t 102.06 \t\t\t 456.92 \t\t\t 279.49 \n",
"\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex7.7:Pg-342"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#example 7.7\n",
"import math\n",
"Gammasat=18.86; # in KN/m^3\n",
"Gammaw=9.81; # in KN/m^3\n",
"phi1=math.pi/180*30; # angle 1\n",
"phi2=math.pi/180*26; # angle 2\n",
"Kp1=(math.tan(math.pi/4+phi1/2))**2;\n",
"Kp2=(math.tan(math.pi/4+phi2/2))**2;\n",
"#for top soil\n",
"c=0;\n",
"sigma0=31.44; # in KN/m^2\n",
"sigmap=sigma0*Kp1+2*c*math.sqrt(Kp1);\n",
"print round(sigmap,2),\"passive pressure for top layer in kN/m**2\"\n",
"#for z=2\n",
"c=10;\n",
"sigma0=31.44; # in KN/m^2\n",
"sigmap=sigma0*Kp2+2*c*math.sqrt(Kp2);\n",
"print round(sigmap,2),\"passive pressure for z=2m in kN/m**2\"\n",
"#for z=3\n",
"c=10;\n",
"sigma0=15.72*2+(Gammasat-Gammaw)*1; # in KN/m^2\n",
"sigmap=sigma0*Kp2+2*c*math.sqrt(Kp2); # in KN/m^2\n",
"print round(sigmap,2),\" is passive pressure for z=3m in kN/m**2\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"94.32 passive pressure for top layer in kN/m**2\n",
"112.53 passive pressure for z=2m in kN/m**2\n",
"135.7 is passive pressure for z=3m in kN/m**2\n"
]
}
],
"prompt_number": 3
}
],
"metadata": {}
}
]
}
|