1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 12 : Display Record And Acquisition Of Data"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example12_1,pg 371"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# find excitation voltage and electrode areas\n",
"\n",
"import math\n",
"#Variable declaration\n",
"E=10**6 #electric field\n",
"l=10**-6 #thickness of LCD\n",
"V=E*l #excitation potential\n",
"I=0.1*10**-6 #current\n",
"rho=E/I #crystal resistivity\n",
"P=10*10**-6 #power consumption\n",
"A=(P/(V*I)) #area of electrodes\n",
"\n",
"\n",
"#Result\n",
"print(\"excitation potential:\")\n",
"print(\"V = %.f V\\n\"%V)\n",
"print(\"crystal resistivity:\")\n",
"print(\"rho = %.f * 10^-12 ohm-cm\\n\"%(rho*10**-12))\n",
"print(\"area of electrodes:\")\n",
"print(\"A = %.f cm^2\"%(A))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"excitation potential:\n",
"V = 1 V\n",
"\n",
"crystal resistivity:\n",
"rho = 10 * 10^-12 ohm-cm\n",
"\n",
"area of electrodes:\n",
"A = 100 cm^2\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example12_2,pg 383"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# find deviation factor\n",
"\n",
"import math\n",
"#Variable declaration\n",
"fc=10**6 #carrier frequency\n",
"m=0.4 #modulation index\n",
"fs=100.0 #signal frequency\n",
"V=2.0 #(+/-)2V range\n",
"\n",
"\n",
"#Calculations\n",
"delfc1=m*fc #frequency deviation for FS(full scale)\n",
"#(+/-) 2V corresponds to delfc Hz deviation assuming linear shift, for (+/-)1V\n",
"delfc2=delfc1/V #frequency deviation for (+/-)1V range\n",
"sig=(delfc1/fs) #deviation factor\n",
"\n",
"#Result\n",
"print(\"frequency deviation for FS:\")\n",
"print(\"delfc1 = %.f * 10^5 Hz\\n\"%(delfc1/10**5)) \n",
"print(\"frequency deviation for given range:\")\n",
"print(\"delfc2 = %.f * 10^5 Hz\\n\"%(delfc2/10**5)) \n",
"print(\"deviation factor:\")\n",
"print(\"sig = %.f * 10^3\"%(sig/10**3))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"frequency deviation for FS:\n",
"delfc1 = 4 * 10^5 Hz\n",
"\n",
"frequency deviation for given range:\n",
"delfc2 = 2 * 10^5 Hz\n",
"\n",
"deviation factor:\n",
"sig = 4 * 10^3\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example12_3,pg 508"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# find wavelength of radiation\n",
"\n",
"import math\n",
"#Variable declaration\n",
"h=6.625*10**-34 #planck's const.\n",
"e=1.6*10**-19 #electron charge\n",
"c=2.998*10**8 #speed of light\n",
"E=2.02 #energy gap\n",
"\n",
"#Calculations\n",
"lam=((h*c)/E) #wavelength of radiation(m/eV)\n",
"#1eV=16.017*10^-20J\n",
"lam=(lam/(16.017*10**-20)) #conversion in meter\n",
"\n",
"#Result\n",
"print(\"wavelength of radiation:\")\n",
"print(\"lam = %.4f * 10^-6 m\"%(math.floor(lam*10**10)/10**4))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"wavelength of radiation:\n",
"lam = 0.6138 * 10^-6 m\n"
]
}
],
"prompt_number": 20
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example12_4,pg 508\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# thickness of LCD crystal\n",
"\n",
"import math\n",
"#Variable declaration\n",
"V=1.3 #excitation voltage\n",
"Vgrad=10.0**5 #potential gradient\n",
"\n",
"#Calculations\n",
"#10^5 V/mm*thickness in mm=excitation voltage\n",
"l=(V/Vgrad) #thickness of LCD\n",
"\n",
"#Result\n",
"print(\"thickness of LCD:\")\n",
"print(\"l = %.f micro-m\"%(l*10**6))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"thickness of LCD:\n",
"l = 13 micro-m\n"
]
}
],
"prompt_number": 22
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example12_5,pg 508"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# find current density\n",
"\n",
"import math\n",
"#Variable declaration\n",
"rho=4.0*10**12 #resistivity of LCD\n",
"Vgrad=10.0**6 #potential gradient\n",
"\n",
"#Calculations\n",
"j=(Vgrad/rho) #current density\n",
"\n",
"#Result\n",
"print(\"current per cm^2:\")\n",
"print(\"j = %.2f micro-A/cm^2\"%(j*10**6))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"current per cm^2:\n",
"j = 0.25 micro-A/cm^2\n"
]
}
],
"prompt_number": 24
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example12_6,pg 508"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# find magnetic flux in tape\n",
"\n",
"import math\n",
"#Variable declaration\n",
"f=2*10**3 #frequency of signal\n",
"v=1.0 #velocity of tape\n",
"w=0.05*10**-3 #gap width\n",
"N=22.0 #no.of turns on head\n",
"V=31*10**-3 #rms voltage o/p\n",
"\n",
"#Calculations\n",
"x=(math.pi*f*w)/v\n",
"x=x*(math.pi/180)\n",
"M=((V*w)/(2*v*N*math.sin(x)))\n",
"\n",
"#Result\n",
"print(\"magnetic flux in tape:\")\n",
"print(\"M = %.2f micro-Wb\"%(M*10**6))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"magnetic flux in tape:\n",
"M = 6.42 micro-Wb\n"
]
}
],
"prompt_number": 25
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example12_7,pg 509"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# channel accomodation\n",
"\n",
"import math\n",
"#variable declartion\n",
"Br=576.0*10**3 #bit rate conversion\n",
"n=8.0 #resolution requirement per channel\n",
"fs=1000.0 #sampling rate\n",
"\n",
"#Calculations\n",
"N=(Br/(fs*3*n)) #no. of channels\n",
"\n",
"#Result\n",
"print(\"no. of channels accomodated:\")\n",
"print(\"N = %.f \"%N)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"no. of channels accomodated:\n",
"N = 24 \n"
]
}
],
"prompt_number": 26
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example12_8,pg 509\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# sensor signal transmission\n",
"\n",
"import math\n",
"#Variable declaration\n",
"Rsmax=1.0*10**3 #sensor resistance max.\n",
"Rsmin=100.0 #sensor resistance min.\n",
"Vs=5.0 #sensor voltage\n",
"\n",
"#Calculations\n",
"Io=(Vs/Rsmax) #current source-> ohm's law\n",
"Vmin=Rsmin*Io #min. output voltage\n",
"\n",
"#Result\n",
"print(\"current source:\")\n",
"print(\"Io = %.f mA\\n\"%(Io*10**3))\n",
"print(\"min. output voltage:\")\n",
"print(\"Vmin = %.1f V\"%Vmin)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"current source:\n",
"Io = 5 mA\n",
"\n",
"min. output voltage:\n",
"Vmin = 0.5 V\n"
]
}
],
"prompt_number": 27
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example12_9,pg 509\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# ROM access time\n",
"\n",
"import math\n",
"#Variable declaration\n",
"#ROM 22*5*7\n",
"N=5.0 #no. of gates in bitand plane\n",
"n=22.0 #no.of inputs\n",
"f=913.0 #refresh rate\n",
"\n",
"#Calculations\n",
"#considering column display\n",
"ts=(1.0/(N*f*n)) #ROM access time\n",
"\n",
"#Result\n",
"print(\"ROM access time:\")\n",
"print(\"ts = %.6f ms\"%(ts*1000))\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"ROM access time:\n",
"ts = 0.009957 ms\n"
]
}
],
"prompt_number": 31
}
],
"metadata": {}
}
]
}
|