1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
|
{
"metadata": {
"name": "",
"signature": "sha256:b01da4319cdb7c7c68bb5f48bf424b751928ca20873effe336ae7e4a6e7ae82d"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 5 Fundamentals of frequency modulation"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.1 Page no 153"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given\n",
"f = 915*10**6\n",
"fm_deviation =12.5*10**3\n",
"\n",
"#Calculation\n",
"max_deviation = f + fm_deviation\n",
"min_deviation = f - fm_deviation\n",
"\n",
"#Result\n",
"print\"Maximum frequency occur during modulation is \",max_deviation/1000.0,\"KHz\"\n",
"print\"Minimum frequency occur during modulation is \",min_deviation/1000.0,\"KHz\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Maximum frequency occur during modulation is 915012.5 KHz\n",
"Minimum frequency occur during modulation is 914987.5 KHz\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.2 Page no 160"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given\n",
"max_deviation = 25*10**3\n",
"fm =15.0*10**3\n",
"\n",
"#Calculation\n",
"mf =max_deviation/fm\n",
"\n",
"#Result\n",
"print\"The deviation ratio of the TV sound is \",round(mf,3)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The deviation ratio of the TV sound is 1.667\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.3 Page no 162"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given\n",
"mf = 2.2\n",
"fd = 7.48*10**3\n",
"\n",
"#Calculation\n",
"fm = fd/mf\n",
"\n",
"#Result\n",
"print\"The maximum modulating frequency is \",fm/1000.0,\"KHz\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The maximum modulating frequency is 3.4 KHz\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.4 Page no 164"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given\n",
"J0 = -0.4\n",
"J1 = -0.07\n",
"J2 = 0.36\n",
"J3 = 0.43\n",
"J4 = 0.28\n",
"\n",
"#Result\n",
"print\"The amplitude of the carrier is \",J0\n",
"print\"Amplitudes of the first four sidebands are \",\" \\n \", J1,\"\\n \",J2,\"\\n \",J3,\"\\n \",J4\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The amplitude of the carrier is -0.4\n",
"Amplitudes of the first four sidebands are \n",
" -0.07 \n",
" 0.36 \n",
" 0.43 \n",
" 0.28\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.5 Page no 165"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given\n",
"fd = 30*10**3\n",
"fm = 5*10**3\n",
"N=9\n",
"\n",
"#Calculation\n",
"bw1 = 2*fm*N\n",
"bw2 = 2*(fd+fm)\n",
"\n",
"#Result\n",
"print\"The maximum bandwidth of the fm signal is \",bw1/10**3,\"KHz\"\n",
"print\"Bandwidth using carson's rule \",bw2/10**3,\"KHz\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The maximum bandwidth of the fm signal is 90 KHz\n",
"Bandwidth using carson's rule 70 KHz\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.6 Page no 167"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given\n",
"S_N = 2.8\n",
"fm = 1.5*10**3\n",
"fd =4*10**3\n",
"\n",
"#Calculation\n",
"import math\n",
"fi= math.asin(1/S_N)\n",
"delta = fi*fm\n",
"SN =fd/delta\n",
"\n",
"#Result\n",
"print\"(a) The frequency deviation caused by the noise \",round(delta,1),\"Hz\"\n",
"print\"(b) The improved output signal to noise ratio is \",round(SN,1)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a) The frequency deviation caused by the noise 547.8 Hz\n",
"(b) The improved output signal to noise ratio is 7.3\n"
]
}
],
"prompt_number": 21
}
],
"metadata": {}
}
]
}
|