1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
|
{
"metadata": {
"name": "",
"signature": "sha256:560b11fe692ef5f7a898cfb445cca26656fbac5b17b2ed8f9a6482b6e6d61c60"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"chapter 4 Amplitude Modulator and Demodulator circuits"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.1 Page no 129"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"\n",
"Vcc =48\n",
"I = 3.5\n",
"efficiency =70 #percent\n",
"modulation = 67 #percent\n",
"m = modulation/100.0\n",
"#calculation\n",
"\n",
"Pi = Vcc*I\n",
"Pc=Pi\n",
"Pm = Pi/2.0\n",
"Pout = (efficiency*Pi)/100.0\n",
"Ps = Pc*((m**2)/4.0)\n",
"maximum_swing = 2*Vcc \n",
"#Result\n",
"\n",
"print \"(a) RF input power to the output stage is \",Pi,\"W\"\n",
"print \"(b) AF power required for 100 percent modulation is \",Pm,\"W\"\n",
"print \"(c) Carrier output power is \",Pout,\"W\"\n",
"print \"(d) Power in one sideband for 67 percent modulation is \",round(Ps,2),\"W\"\n",
"print \"(e) maximum and minimum dc supply voltage swing with 100 percent modulation is \",maximum_swing,\"V\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a) RF input power to the output stage is 168.0 W\n",
"(b) AF power required for 100 percent modulation is 84.0 W\n",
"(c) Carrier output power is 117.6 W\n",
"(d) Power in one sideband for 67 percent modulation is 18.85 W\n",
"(e) maximum and minimum dc supply voltage swing with 100 percent modulation is 96 V\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.2 Page no 145"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"\n",
"fc =4.2*10**6\n",
"f1 = 300\n",
"f2 = 3400\n",
"#calculation\n",
"#upper sideband\n",
"\n",
"x0=fc+f1\n",
"y0=fc+f2\n",
"#lower sideband\n",
"\n",
"x1=fc-f1\n",
"y1=fc-f2\n",
"frequency=(x1+y1)/2.0\n",
"#Result \n",
"\n",
"print \"(a) Upper sideband ranges from \",x0,\"to\",y0\n",
"print \" lower sideband ranges from \",x1,\"to\",y1\n",
"print \"(b) approximate center frequency of a bandpass filter is \",frequency,\"Hz\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a) Upper sideband ranges from 4200300.0 to 4203400.0\n",
" lower sideband ranges from 4199700.0 to 4196600.0\n",
"(b) approximate center frequency of a bandpass filter is 4198150.0 Hz\n"
]
}
],
"prompt_number": 29
}
],
"metadata": {}
}
]
}
|