1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
|
{
"metadata": {
"name": "",
"signature": "sha256:9283b3273e4b25859b1f947b0b70d061842802ddcf82b087896def4a57fa123c"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h1>Chapter 1: Semiconductor Basics<h1>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 1.1(a), Page Number:29<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"# variable declaration\n",
"V_bias=10.0; #bias voltage in volt\n",
"R_limit=1000; #limiting resistance in ohm\n",
"r_d =10.0; #r_d value\n",
"\n",
"#calculation\n",
"#IDEAL MODEL\n",
"print \"IDEAL MODEL\"\n",
"V_f=0; #voltage in volt\n",
"I_f=V_bias/R_limit; #foward current\n",
"V_R_limit=I_f*R_limit; #limiting voltage\n",
"print \"forward voltage = %.2f volts\" %V_f\n",
"print \"forward current = %.2f amperes\" %I_f\n",
"print \"voltage across limiting resistor = %.2f volts\" %V_R_limit\n",
"\n",
"#PRACTICAL MODEL\n",
"print \"\\nPRACTICAL MODEL\"\n",
"V_f=0.7; #voltage in volt\n",
"I_f=(V_bias-V_f)/R_limit; #foward current\n",
"V_R_limit=I_f*R_limit; #limiting voltage\n",
"print \"forward voltage = %.2f volts\" %V_f\n",
"print \"forward current = %.3f amperes\" %I_f\n",
"print \"voltage across limiting resistor = %.2f volts\" %V_R_limit\n",
"\n",
"#COMPLETE MODEL\n",
"print \"\\nCOMPLETE MODEL\"\n",
"I_f=(V_bias-0.7)/(R_limit+r_d); #foward current\n",
"V_f=0.7+I_f*r_d; #forward voltage\n",
"V_R_limit=I_f*R_limit; #limiting voltage\n",
"print \"forward voltage = %.3f volts\" %V_f\n",
"print \"forward current = %.3f amperes\" %I_f\n",
"print \"voltage across limiting resistor = %.2f volts\" %V_R_limit"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"IDEAL MODEL\n",
"forward voltage = 0.00 volts\n",
"forward current = 0.01 amperes\n",
"voltage across limiting resistor = 10.00 volts\n",
"\n",
"PRACTICAL MODEL\n",
"forward voltage = 0.70 volts\n",
"forward current = 0.009 amperes\n",
"voltage across limiting resistor = 9.30 volts\n",
"\n",
"COMPLETE MODEL\n",
"forward voltage = 0.792 volts\n",
"forward current = 0.009 amperes\n",
"voltage across limiting resistor = 9.21 volts"
]
}
],
"prompt_number": 1
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 1.1(b), Page Number:29<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# variable declaration\n",
"V_bias=5; #bias voltage in volt\n",
"I_R=1*10**-6; #current\n",
"R_limit=1000 #in Ohm\n",
"\n",
"#calculation\n",
"#IDEAL MODEL\n",
"print \"IDEAL MODEL\"\n",
"I_r=0.0; #current in ampere\n",
"V_R=V_bias; #voltages are equal\n",
"V_R_limit=I_r*R_limit; #limiting voltage\n",
"print \"Reverse voltage across diode = %.2f volts\" %V_R\n",
"print \"Reverse current through diode= %.2f amperes\" %I_r\n",
"print \"voltage across limiting resistor = %.2f volts\" %V_R_limit\n",
"\n",
"#PRACTICAL MODEL\n",
"print \"\\nPRACTICAL MODEL\"\n",
"I_r=0.0; #current in ampere\n",
"V_R=V_bias; #voltages are equal\n",
"V_R_limit=I_r*R_limit; #limiting voltage\n",
"print \"Reverse voltage across diode= %.2f volts\" %V_R\n",
"print \"Reverse current through diode = %.2f amperes\" %I_r\n",
"print \"voltage across limiting resistor = %.2f volts\" %V_R_limit\n",
"\n",
"#COMPLETE MODEL\n",
"print \"\\nCOMPLETE MODEL\"\n",
"I_r=I_R; #current in ampere\n",
"V_R_limit=I_r*R_limit; #limiting voltage\n",
"V_R=V_bias-V_R_limit; #voltage in volt\n",
"print \"Reverse voltage across diode = %.3f volts\" %V_R\n",
"print \"Reverse current through diode = %d micro Amp\" %(I_r*10**6)\n",
"print \"voltage across limiting resistor = %d mV\" %(V_R_limit*1000)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"IDEAL MODEL\n",
"Reverse voltage across diode = 5.00 volts\n",
"Reverse current through diode= 0.00 amperes\n",
"voltage across limiting resistor = 0.00 volts\n",
"\n",
"PRACTICAL MODEL\n",
"Reverse voltage across diode= 5.00 volts\n",
"Reverse current through diode = 0.00 amperes\n",
"voltage across limiting resistor = 0.00 volts\n",
"\n",
"COMPLETE MODEL\n",
"Reverse voltage across diode = 4.999 volts\n",
"Reverse current through diode = 1 micro Amp\n",
"voltage across limiting resistor = 1 mV"
]
}
],
"prompt_number": 2
}
],
"metadata": {}
}
]
}
|