summaryrefslogtreecommitdiff
path: root/Power_Plant_Engineering_by_P._K._Nag/Ch9.ipynb
blob: b7e3e7721a4bbf8d69e242ef0cd5a0c1a127bd39 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Chapter 9 : Nuclear Power Plant"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex: 9.1 Pg: 648"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      " The mass defect = 0.13703 amu \n",
      " The binding energy per nucleon = 7.97 MeV \n"
     ]
    }
   ],
   "source": [
    "#Input data\n",
    "mp=1.007277##Atomic Mass of proton in amu\n",
    "mn=1.008665##Atomic Mass of neutron in amu\n",
    "me=0.00055##Atomic Mass of electron in amu\n",
    "mo=15.99491##Atomic Mass of oxygen in amu\n",
    "np=8##Number of protons in oxygen\n",
    "ne=8##Number of electrons in oxygen\n",
    "nn=8##Number of neutrons in oxygen\n",
    "a=931##One amu in MeV\n",
    "No=16##Number of nucleons in oxygen\n",
    "\n",
    "#Calculations\n",
    "m=(np*mp)+(ne*me)+(nn*mn)-mo##The mass defect in amu\n",
    "B=m*a##Binding energy in MeV\n",
    "Bn=B/No##Binding energy per nucleon\n",
    "\n",
    "#Output\n",
    "print \" The mass defect = %3.5f amu \\n The binding energy per nucleon = %3.2f MeV \"%(m,Bn)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex: 9.2 Pg: 649"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The decay constant = 1.36e-11 s**-1\n",
      "The initial activity of 1 g of radium 226 = 3.61e+10 dis/s\n"
     ]
    }
   ],
   "source": [
    "#Input data\n",
    "amr=226.095##Atomic mass of radium in amu\n",
    "AC=6.023*10**23##Avogadro constant in molecules/g.mol\n",
    "h=1620##Half life of radium in years\n",
    "\n",
    "#Calculations\n",
    "D=(0.6931/(h*365*24*3600))##The decay constant in 1/s\n",
    "Na=AC/amr##Number of atoms per gram of radium \n",
    "Ao=D*Na##Initial activity in dis/s\n",
    "\n",
    "#Output\n",
    "print \"The decay constant = %0.2e s**-1\"%D\n",
    "print \"The initial activity of 1 g of radium 226 = %0.2e dis/s\"%Ao,"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex: 9.3 Pg: 649"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The fuel consumed of U-235 per day = 3.9 g/day \n"
     ]
    }
   ],
   "source": [
    "from __future__ import division\n",
    "#Input data\n",
    "F=190##Each fission of U-235 yeilds in MeV\n",
    "a=85##Assuming the Neutrons absorbed by U-235 cause fission in percentage\n",
    "b=15##Non fission capture to produce an isotope U-236 in percentage\n",
    "Q=3000##The amount of thermal power produced in MW\n",
    "\n",
    "#Calculations\n",
    "E=F*1.60*10**-13##Each fission yields a useful energy in J\n",
    "N=1/E##Number of fissions required \n",
    "B=((10**6)*(N*86400))/(a/100)##One day operation of a reactor the number of U-235 nuclei burned is in absorptions per day\n",
    "M=(B*235)/(6.023*10**23)##Mass of U-235 consumed to produce one MW power in g/day\n",
    "M1=M*3##Mass of U-235 consumed to produce 3000 MW power in g/day\n",
    "\n",
    "#Output\n",
    "print \"The fuel consumed of U-235 per day = %3.1f g/day \"%(M1)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex: 9.4 Pg: 650"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The cross section of neutrons = 5.02 barns \n"
     ]
    }
   ],
   "source": [
    "#Input data\n",
    "sa1=10##Cross section of nucleus in barns\n",
    "N=2200##Neutrons in m/s\n",
    "En1=0.1##Kinetic energy of neutrons increases in eV\n",
    "En2=0.02525##Kinetic energy of neutron in eV\n",
    "\n",
    "#Calculations\n",
    "sa2=sa1/((En1/En2)**0.5)##The cross section of neutrons in barns\n",
    "\n",
    "#Output\n",
    "print \"The cross section of neutrons = %3.2f barns \"%(sa2)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex: 9.5 Pg: 650"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The microscopic absorption cross section of natural uranium = 7.6 barns \n"
     ]
    }
   ],
   "source": [
    "#Input data\n",
    "U1=99.285##Uranium consists of U-238 in percentage \n",
    "U2=0.715##Uranium consists of U-235 in Percentage\n",
    "E=0.025##The energy of neutrons in eV\n",
    "sc=2.72##Capture cross section for U-238 in barns\n",
    "sf=0##fission cross section for U-238 in barns\n",
    "sc1=101##Capture cross section for U-235 in barns\n",
    "sf1=579##fission cross section for U-235 in barns\n",
    "\n",
    "#Calculations\n",
    "sa=(U1/100)*(sc+sf)+(U2/100)*(sc1+sf1)##The microscopic absorption cross section of natural uranium in barns\n",
    "\n",
    "#Output\n",
    "print \"The microscopic absorption cross section of natural uranium = %3.1f barns \"%(sa)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex: 9.6 Pg: 650"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The microscopic capture cross section of water = 0.0222 cm**-1 \n"
     ]
    }
   ],
   "source": [
    "#Input data\n",
    "p=1##The density of water in g/cm**3\n",
    "sch=0.332##The microscopic capture cross section of hydrogen in barn\n",
    "sco=0.0002##The microscopic capture cross section of oxygen in barn\n",
    "\n",
    "#Calculations\n",
    "N=(6.023*10**23)*p/18##Number of molecules of water per cm**3\n",
    "scw=(2*N*sch*10**-24)+(N*sco*10**-24)##The microscopic capture cross section of water in cm**-1\n",
    "\n",
    "#output\n",
    "print \"The microscopic capture cross section of water = %3.4f cm**-1 \"%(scw)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex: 9.7 Pg: 650"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The thermal neutron flux = 9.10e+11 cm**-2s**-1\n",
      "The average distance that a neutron travels before it is absorbed = 0.010 cm\n"
     ]
    }
   ],
   "source": [
    "#Input data\n",
    "m=230##The amount of boron piece in g\n",
    "mw=10##The molecular weight of boron \n",
    "R=9.57*10**13##Reaction rate in cm**-3s**-1\n",
    "d=2.3##Density of boron in g/cm**3\n",
    "sa=755##Absorbption cross section in barns\n",
    "ss=4##Elastic scattering cross section in barns\n",
    "\n",
    "#Calculations\n",
    "st=sa+ss##The total cross section in barns\n",
    "N=(d*6.023*10**23)/mw##The number density of neutrons in cm**-3\n",
    "S=N*st*10**-24##Number density of neutrons for total in cm**-1\n",
    "F=R/S##Neutron flux in cm**-2s**-1\n",
    "L=1/S##Average distance a neutron travels before it is absorbed in cm\n",
    "\n",
    "#Output\n",
    "print \"The thermal neutron flux = %0.2e cm**-2s**-1\"%F\n",
    "print \"The average distance that a neutron travels before it is absorbed = %0.3f cm\"%L"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex: 9.8 Pg: 651"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      " The logarithmic energy decrement representing the neutron energy loss per elastic collision = 0.158 \n",
      " The number of collisions necessary = 121 \n"
     ]
    }
   ],
   "source": [
    "from math import log\n",
    "#Input data\n",
    "Eni=4.8##The energy of the newly born electron in MeV\n",
    "Enf=0.025##The energy of the electron after slow down in eV\n",
    "A=12##The mass number of the graphite (carbon)\n",
    "\n",
    "#Calculations\n",
    "L=1-(((A-1)**2/(2*A))*log((A+1)/(A-1)))##The logarithmic energy decrement\n",
    "n=(log(Eni*10**6/Enf))/L##The number of collisions required to slowdown the neutron \n",
    "\n",
    "#Output\n",
    "print \" The logarithmic energy decrement representing the neutron energy loss per elastic collision = %3.3f \\n The number of collisions necessary = %3.0f \"%(L,n)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex: 9.9 Pg: 651"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      " (a) The rating of the reactor = 3.36 MW/tonne \n",
      " (b)The rate of consumption of U-235 per day = 0.353 kg/day (or) 353 g/day \n"
     ]
    }
   ],
   "source": [
    "#Input data\n",
    "f=100##The reactor is fuelled of natural uranium in tonnes\n",
    "A=238.05##The atomic mass of natural uranium \n",
    "F=10**13##The average thermal neutron flux in neutrons/cm**2s\n",
    "A1=235.04##The atomic mass of U-235\n",
    "sf=579##The fission cross section of U-235 in barns\n",
    "sc=101##The capture cross section of U-235 in barns\n",
    "E=200##The energy released per fission in MeV\n",
    "P=0.715##U-235 in natural uranium in percentage\n",
    "N=2200##The average thermal neutron in m/s\n",
    "\n",
    "#Calculations\n",
    "n=((f*1000)*6.023*10**26*(P/100))/A##The number of U-235 atoms in the reactor in atoms\n",
    "R=(sf*10**-24)*F*n##The rate of fission in the reactor in fissions/s\n",
    "T=R*E*1.602*10**-19##Thermal power of the reactor in MW\n",
    "Rr=T/f##Rating the reactor MW/tonne\n",
    "Rc=(((R*A1*60*60*24))/(6.023*10**26))##The rate of consumption of U-235 by fission in kg/day\n",
    "Rcc=Rc*1000##The rate of consumption of U-235 by fission in g/day\n",
    "\n",
    "#Output\n",
    "print \" (a) The rating of the reactor = %3.2f MW/tonne \\n (b)The rate of consumption of U-235 per day = %3.3f kg/day (or) %3.0f g/day \"%(Rr,Rc,Rcc)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex: 9.10 Pg: 652"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The specific energy release rate for a light water uranium reactor = 138.13 W/cm**3\n"
     ]
    }
   ],
   "source": [
    "#Input data\n",
    "f=3.5##Mass fraction of U-235 in the fuel in percentage\n",
    "G=180##Energy per fission in Mev\n",
    "F=10**13##The neutron flux in neutrons/cm**2s\n",
    "sf=577##Fission cross section of U-235 in barns\n",
    "M=1.602*10**-13##One MeV in J\n",
    "\n",
    "#Calculations\n",
    "N=2.372*(f/100)*10**22##The fuel density for a uranium oxide fuel in nuclei/cm**3\n",
    "q=G*N*sf*10**-24*F##The rate of energy release in MeV/cm**3s\n",
    "qg=q*M##The rate of energy release in W/cm**3\n",
    "\n",
    "#Output\n",
    "print \"The specific energy release rate for a light water uranium reactor = %3.2f W/cm**3\"%(qg)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex: 9.11 Pg: 653"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The reactor power level at the end of 1s is 3.196 MW\n"
     ]
    }
   ],
   "source": [
    "from math import exp\n",
    "#Input data\n",
    "P=1##The operating power of a reactor in W\n",
    "K=1.0015##The effective multiplication factor of Reactor becomes suppercritical \n",
    "t=0.0001##The average neutron life in s\n",
    "t1=1.0001##Neutron life time in s\n",
    "\n",
    "#Calculations \n",
    "d=(K-1)/K##The reactivity \n",
    "Z=(d*P)/t##The number of neutrons\n",
    "n=exp(Z)/10**6##Neutron density * 10**6\n",
    "\n",
    "#Output\n",
    "print \"The reactor power level at the end of 1s is %3.3f MW\"%(n)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}