summaryrefslogtreecommitdiff
path: root/Power_Plant_Engineering_by_P._K._Nag/Ch3.ipynb
blob: 72e7fae046de2fd79ffec8d74a65ed8a701aa212 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Chapter 3 : Combined Cycle Power Generation"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex: 3.1 Pg: 143"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      " (a) The amount of mercury circulated per kg of water is 7.4151 kg \n",
      " (b) The efficiency of the combined cycle is 48.1 percent\n"
     ]
    }
   ],
   "source": [
    "from __future__ import division\n",
    "#Input data\n",
    "p=40#Pressure in bar\n",
    "T1=400+273#Temperature in K\n",
    "T2=40+273#Temperature in K\n",
    "x=[0,10,515.5,72.23,363.0,0.1478,0.5167,80.9*10**-6,0.0333]#Property values from table p(bar),t(degree C), hf,hg(kJ/kg),sf,sg(kJ/kg.K),vf,vg(m**3/kg)\n",
    "y=[0,0.2,277.3,38.35,336.55,0.0967,0.6385,77.4*10**-6,1.163]#Property values from table p(bar),t(degree C), hf,hg(kJ/kg),sf,sg(kJ/kg.K),vf,vg(m**3/kg)\n",
    "\n",
    "#Calculations\n",
    "h1=3216#Enthalpy in kJ/kg\n",
    "s1=6.7690#Entropy in kJ/kg.K\n",
    "s2=s1#Entropy in kJ/kg.K\n",
    "x2=(s2-0.5725)/(8.2570-0.5725)#Dryness fraction\n",
    "h2=167.57+x2*2406.7#Enthalpy in kJ/kg\n",
    "h3=167.57#Enthalpy in kJ/kg\n",
    "h4=(167.57+p*100*1.008*10**-3)#Enthalpy in kJ/kg\n",
    "h5=1087.31#Enthalpy in kJ/kg\n",
    "h6=2801.4#Enthalpy in kJ/kg\n",
    "ha=x[(4)]#Enthalpy in kJ/kg\n",
    "sa=x[(6)]#Entropy in kJ/kg.K\n",
    "sb=sa#Entropy in kJ/kg.K\n",
    "xb=(sb-y[(5)])/(y[(6)]-y[(5)])#Dryness fraction\n",
    "hb=(y[(3)]+xb*(y[(4)]-y[(3)]))#Enthalpy in kJ/kg\n",
    "hc=y[(3)]#Enthalpy in kJ/kg\n",
    "hd=hc#Enthalpy in kJ/kg\n",
    "m=(h6-h5)/(hb-hc)#Mass of mercury circulated per kg of steam\n",
    "Q1=m*(ha-hd)+(h1-h6)+(h5-h4)#Heat supplied in kJ/kg\n",
    "Q2=(h2-h3)#Heat rejected in kJ/kg\n",
    "nc=(1-(Q2/Q1))*100#Efficiency in percent\n",
    "\n",
    "#Output\n",
    "print \" (a) The amount of mercury circulated per kg of water is %3.4f kg \\n (b) The efficiency of the combined cycle is %3.1f percent\"%(m,nc)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex: 3.2 Pg: 145"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "(a) Rate of heat transfer in the steam generator is 14.844 kW \n",
      " (b) The net power output of the binary cycle is 4030 kW \n",
      " (c) The rate of heat transfer to the industrial process is 5799 kW\n"
     ]
    }
   ],
   "source": [
    "from __future__ import division\n",
    "#Input data\n",
    "m=5#Mass flow rate in kg/s\n",
    "p1=40#Pressure in bar\n",
    "T1=440+273#Temperature in K\n",
    "p2=1.5#Pressure in bar\n",
    "p3=1#Pressure in bar\n",
    "T3=60+273#Temperature in K\n",
    "p4=16#Pressure in bar\n",
    "T4=100+273#Temperature in K\n",
    "p5=9#Pressure in bar\n",
    "\n",
    "#Calculations\n",
    "h1=3307.1#Enthalpy in kJ/kg\n",
    "s1=6.9041#Entropy in kJ/kg.K\n",
    "s2=s1#Entropy in kJ/kg.K\n",
    "h2=2570.8#Enthalpy in kJ/kg\n",
    "h3=417.46#Enthalpy in kJ/kg\n",
    "h6=(251.13+(1.0172*10**-3)*(p3-0.1994)*100)#Enthalpy in kJ/kg\n",
    "m3=(m/2)#Mass flow rate in kg/s\n",
    "m6=m3#Mass flow rate in kg/s\n",
    "h4=(m3*h3+m6*h6)/m#Enthalpy in kJ/kg\n",
    "h5=(h4+(1.0291*10**-3)*(p1-p3)*100)#Enthalpy in kJ/kg\n",
    "ha=241.58#Enthalpy in kJ/kg\n",
    "sa=0.7656#Entropy in kJ/kg.K\n",
    "sb=sa#Entropy in kJ/kg.K\n",
    "hb=229.43#Enthalpy in kJ/kg\n",
    "hc=71.93#Enthalpy in kJ/kg\n",
    "hd=hc+(0.7914*10**-3*(p4-p5)*100)#Enthalpy in kJ/kg\n",
    "Q1=(m*(h1-h5))/1000#Heat supplied in kW\n",
    "Wnets=(m*((h1-h2)-(h5-h4)))#Net workdone by steam in kW\n",
    "mR12=(m3*(h2-h3))/(ha-hd)#Mass of R12 in kg/s\n",
    "WnetR=(mR12*((ha-hb)-(hd-hc)))#Net workdone by R12 in kW\n",
    "T=Wnets+WnetR#Total output in kW\n",
    "Qh=(m6*(h2-h6))#Heat rejected in kW\n",
    "\n",
    "#Output\n",
    "print \"(a) Rate of heat transfer in the steam generator is %3.3f kW \\n (b) The net power output of the binary cycle is %d kW \\n (c) The rate of heat transfer to the industrial process is %3.0f kW\"%(Q1,T,Qh)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex: 3.3 Pg: 146"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      " (a) The flow rate of air is 396.33 kg/s and steam is 82.22 kg/s \n",
      " (b) The power outputs of the gas turbine is 87.77 MW and steam turbine is 112.23 MW \n",
      " (c) The thermal efficiency of the combined plant is  50 percent \n",
      " (d) The air fuel ratio is 42.7\n"
     ]
    }
   ],
   "source": [
    "from numpy import mat\n",
    "#Input data\n",
    "rp=7.5#Pressure ratio \n",
    "T1=15+273#Inlet air temperature in K\n",
    "T3=750+273#Maximum temperature in K\n",
    "T6=100+273#Temperature in K\n",
    "p1=50#Pressure in bar\n",
    "T7=600+273#Temperature in K\n",
    "p2=0.1#Pressure in bar\n",
    "P=200#Total power in MW\n",
    "CV=43.3#calorific value in MJ/kg\n",
    "cpg=1.11#Specific heat for gas in kJ/kg.K\n",
    "g=1.33#Ratio of specific heats for gas\n",
    "cpa=1.005#Specific heat for air in kJ/kg.K\n",
    "g1=1.4#Ratio of specific heats for air\n",
    "\n",
    "#Calculations\n",
    "T2=(T1*rp**((g1-1)/g1))#Temperature in K\n",
    "T4=(T3/rp**((g-1)/g))#Temperature in K\n",
    "ha=3670#Enthalpy in kJ/kg\n",
    "hb=2305#Enthalpy in kJ/kg\n",
    "hc=192#Enthalpy in kJ/kg\n",
    "hd=hc#Enthalpy in kJ/kg\n",
    "#ma*cpg*(T3-T6)=ms*(ha-hd)\n",
    "#ma*cpg*(T3-T4)-ma*cpa*(T2-T1)+ms*(ha-hb)=P*1000\n",
    "#Solving these two equations\n",
    "A=mat([[cpg*(T3-T6), (hd-ha)],[cpg*(T3-T4)-cpa*(T2-T1), (ha-hb)]])#Coefficient matrix\n",
    "B=mat([[0],[(P*10**3)]])#Constant matrix\n",
    "X=(A**-1)*B#Variable matrix\n",
    "\n",
    "Wgt=(cpg*(T3-T4)-cpa*(T2-T1))*X[0]*10**-3#Net workdone by Gas turbine in MW\n",
    "Wst=(P-Wgt)#Net workdone by steam turbine in MW\n",
    "Q1=(X[0]*cpg*(T3-T2+T3-T4))#Heat supplied in MW\n",
    "nth=(P/(Q1*10**-3))*100#Thermal efficiency in percent\n",
    "af=(CV*10**3)/(cpg*(T3-T2+T3-T4))#Air fuel ratio\n",
    "\n",
    "#Output\n",
    "print \" (a) The flow rate of air is %3.2f kg/s and steam is %3.2f kg/s \\n (b) The power outputs of the gas turbine is %3.2f MW and steam turbine is %3.2f MW \\n (c) The thermal efficiency of the combined plant is %3.0f percent \\n (d) The air fuel ratio is %3.1f\"%(X[0],X[1],Wgt,Wst,nth,af)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex: 3.4 Pg: 148"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "(a) Total power output is 82422.08 kW and overall efficiency is 41.54 percent lost heat coefficient is 0.351\n",
      " Exergy efficiency is  40 percent \n",
      "\n",
      " Input is 212810 kW \n",
      " Total Output is 82422 kW \n",
      " Total losses is 123309 kW \n",
      " Exergy outut + exergy destruction = 205731 kW which is 1.3 percent gretter than the exergy input\n"
     ]
    }
   ],
   "source": [
    "from __future__ import division\n",
    "from math import log\n",
    "#Input data\n",
    "p1=1#Pressure in bar\n",
    "T1=25+273#Temperature in K\n",
    "rp=8#Pressure ratio of compressor\n",
    "Tm=900+273#Maximum temperature in K\n",
    "pd=3#pressure drop in combustion chamber in percent\n",
    "nc=0.88#Efficiency of compressor\n",
    "nt=0.88#Efficiency of turbine\n",
    "CV=44.43#Calorific value of fuel in MJ/kg\n",
    "cpa=1.006#Specific heat of air in kJ/kg.K\n",
    "cpg=1.148#Specific heat of gas in kJ/kg.K\n",
    "g1=1.333#Specific heat ratio of gas\n",
    "g=1.4#Specific heat ratio of air\n",
    "T3=425+273#Temperature in K\n",
    "p2=40#Pressure in bar\n",
    "p3=0.04#Condensor pressure in bar\n",
    "Th=170.4+273#Temperature of feed water to the HRSG in K\n",
    "nst=0.82#Efficiency of steam turbine\n",
    "pdh=5#Pressure drop in HRSG in kPa\n",
    "m=29.235#Steam flow rate in kg/s\n",
    "A=1.0401#si=1.0401+0.1728*(h/c)\n",
    "B=0.1728#si=1.0401+0.1728*(h/c)\n",
    "\n",
    "#Calculations\n",
    "#Gas turbine plant\n",
    "T2=(rp**((g-1)/(g*nt)))*T1#Temperature in K\n",
    "#Combustor\n",
    "pc=((pd/100)*rp)#Pressure loss in bar\n",
    "pcx=(rp-pc)#Pressure in bar\n",
    "f=((cpg*(Tm-T1))-(cpa*(T2-T1)))/((CV*10**3)-(cpa*(T2-T1)))#Fuel flow rate in kg/s\n",
    "af=(1-f)/f#Air fuel ratio\n",
    "#C8H18+12.5O2->8CO2+9H2O\n",
    "afc=(12.5*32)/(0.232*114)#Air fuel ratio for stoichiometric combustion\n",
    "ea=((af-afc)/afc)*100#Excess air in percent\n",
    "#Gas turbine\n",
    "p4=p1+0.05#Pressure in bar\n",
    "T4=(Tm/(pcx/p4)**(((g1-1)*nt)/g1))#Temperature in K\n",
    "#HRSG\n",
    "T5=250+30#Temeprature in K\n",
    "ha=3272#Enthalpy in kJ/kg\n",
    "hf=1087.31#Enthalpy in kJ/kg\n",
    "ws=(cpg*((T4-273)-T5))/(ha-hf)#Flow rate in kg/s\n",
    "he=721.1#Enthalpy in kJ/kg\n",
    "T6=(T4-273)-((ws*(ha-he))/cpg)#Temperature in degree C\n",
    "#Power output\n",
    "sa=6.853#Entropy in kJ/kg.K\n",
    "sbs=sa#Entropy in kJ/kg.K\n",
    "xbs=(sbs-0.4266)/8.052#Dryness fraction\n",
    "hbs=(121.46+xbs*2432.9)#ENthalpy in kJ/kg\n",
    "Wst=(m*(ha-hbs)*nst)#Workdone in kW\n",
    "wg=(m/ws)#gas flow rate in kg/s\n",
    "wa=(1-f)*wg#Air flow rate entering the compressor in kg/s\n",
    "Wgt=(wg*cpg*(Tm-T4))-(wa*cpa*(T2-T1))#Power output of gas turbine in kW\n",
    "TO=Wst+Wgt#Total power output in kW\n",
    "wf1=(f*wa)#Fuel mass flow rate in kg/s\n",
    "wf=4.466#Rounding off of wf1 for exact answers\n",
    "no=(TO/(wf*(CV*10**3)))*100#Overall efficiency of the combined plant in percent\n",
    "ns=((ha-hbs)/(ha-he))*nst#Efficiency of steam plant\n",
    "ngtp=(Wgt/(wf*(CV*10**3)))#Efficiency of the GT plant\n",
    "xL=((wg*cpg*(T6-(T1-273)))/(wf*(CV*10**3)))#Lost heat coefficient\n",
    "nov=(ns+ngtp-ns*ngtp-ngtp*xL)#The overall efficiency\n",
    "#Energy fluxes and irreversibilities\n",
    "si=(A+B*((18*1)/(8*12)))#si for octane C8H18\n",
    "dHo=(wf*CV*10**3)#Power in kW\n",
    "dGo=(si*dHo)#Power in kW\n",
    "TS=(dGo-dHo)#Power in kW\n",
    "#Compressor\n",
    "dS=(cpa*log(T2/T1))-(((cpa*(g-1))/g)*log(rp))#change in entropy in kJ/kg.K\n",
    "Ic=(wa*T1*dS)#power in kW\n",
    "Icx=((wg*T1*((cpg*log(Tm/T1))-(((cpg*(g1-1))/g1)*log(pcx))))-(wa*T1*((cpa*log(T2/T1))-(((cpa*(g-1))/g)*log(rp))))+TS)#Compressor in kW\n",
    "Icg=(-cpg*log(Tm/T4))-(((cpg*(g1-1))/g1)*log(p4/pcx))#Difference in entropy in kJ/kg.K\n",
    "IGT=(Icg*T1*wg)#Gas turbine in kW\n",
    "se=2.046#Enntropy in kJ/kg.K\n",
    "sae=(sa-se)#Difference in entropy in kJ/kg.K\n",
    "s64=(cpg*log((T6+273)/T4))-(((cpg*(g1-1))/g1)*log(p4/p1))#Difference in entropy in kJ/kg.K\n",
    "Ih=(T1*m*sae)+(wg*T1*s64)#For HRSG in kW\n",
    "hb=(ha-(nst*(ha-hbs)))#Enthalpy in kJ/kg\n",
    "xb=(hb-121.46)/2432.9#Dryness Fraction\n",
    "sb=(0.4226+xb*8.052)#Entropy in kJ/kg.K\n",
    "Ist=(m*(sb-sa)*T1)#For steam turbine in kW\n",
    "Iexh=(wg*cpg*((T6-(T1-273))-(T1*log((T6+273)/T1))))#For exhaust in kW\n",
    "Tl=Icx+Icg+IGT+Ih+Ist+Iexh#Exergy losses in kW\n",
    "T=Tl+Wgt+Wst#Total exergy output and exergy destruction in kW\n",
    "ee=((Wst+Wgt)/T)*100#Exergy efficiency in percent\n",
    "\n",
    "#Output\n",
    "print \"(a) Total power output is %3.2f kW and overall efficiency is %3.2f percent lost heat coefficient is %3.3f\\n Exergy efficiency is %3.0f percent \\n\\n Input is %3.0f kW \\n Total Output is %3.0f kW \\n Total losses is %3.0f kW \\n Exergy outut + exergy destruction = %3.0f kW which is 1.3 percent gretter than the exergy input\"%(TO,no,xL,ee,dGo,(Wgt+Wst),Tl,T)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex: 3.5 Pg: 154"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The overall efficiency of the combined cycle is 77.5 percent\n"
     ]
    }
   ],
   "source": [
    "#Input data\n",
    "n1=0.5#Efficiency of mercury\n",
    "n2=0.4#Efficiency of steam\n",
    "n3=0.25#Efficiency of composite cycle\n",
    "\n",
    "#Calculations\n",
    "n=(1-(1-n1)*(1-n2)*(1-n3))*100#Overall efficiency of the combined cycle in percent\n",
    "\n",
    "#Output\n",
    "print \"The overall efficiency of the combined cycle is %3.1f percent\"%(n)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex: 3.6 Pg: 156"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The overall efficiency of the combined plant is  58 percent\n"
     ]
    }
   ],
   "source": [
    "#Input data\n",
    "z=30.0#Percentage of total energy of fuel\n",
    "n=40.0#Cycle efficiency in percent\n",
    "\n",
    "#Calculations\n",
    "on=((z/100)+(1-(z/100))*(n/100))*100#Overall efficiency in percent\n",
    "\n",
    "#Output\n",
    "print \"The overall efficiency of the combined plant is %3.0f percent\"%(on)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex: 3.7 Pg: 158"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "(a) The output voltage is 1.1629 V \n",
      " (b) The current density in the cathode is 4.239 A/cm**2 and anode is 1.092 A/cm**2 \n",
      " (c) Power output per unit area is 3.66 W/cm**2 \n",
      " (d) Thermal efficiency is 44.3 percent\n"
     ]
    }
   ],
   "source": [
    "from __future__ import division\n",
    "from math import exp\n",
    "#Input data\n",
    "Tc=1250+273#Cathode temperature in K\n",
    "Ta=500+273#Anode temperature in K\n",
    "e=1.602*10**-19#Charge in coloumb\n",
    "K=1.38*10**-23#Boltzmann constant in J/molecule.K\n",
    "b=18#Constant\n",
    "\n",
    "#Calculations\n",
    "Va=((b*K*Ta)/e)#Voltage of anode in V\n",
    "Vc=((b*K*Tc)/e)#Voltage of cathode in V\n",
    "Vo=Vc-Va#Output voltage in V\n",
    "Ja=(120*Ta**2*exp(-b))#Current density in Cathode in A/cm**2\n",
    "Jc=(120*Tc**2*exp(-b))#Current density in Anode in A/cm**2\n",
    "P=Vo*(Jc-Ja)#Power output per unit area in /cm**2\n",
    "nth=(((Tc-Ta)/Tc)*(b/(b+2)))*100#Thermal efficiency in percent\n",
    "\n",
    "#Output\n",
    "print \"(a) The output voltage is %3.4f V \\n (b) The current density in the cathode is %3.3f A/cm**2 and anode is %3.3f A/cm**2 \\n (c) Power output per unit area is %3.2f W/cm**2 \\n (d) Thermal efficiency is %3.1f percent\"%(Vo,Jc,Ja,P,nth)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex: 3.8 Pg: 159"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "(a) The thermal efficiency of thermocouple generator is 9.1 percent \n",
      " (b) The number of thermo couples in series is 309 \n",
      " (c) The lenght of the thermal elements is 0.519 cm and area is 43.48 cm**2 \n",
      " (d) The output open-circuit voltage is 0.6 V \n",
      " (e) At full load: \n",
      " The heat input is 3.558 kW \n",
      " The heat rejected is 3.236 kW \n",
      " At no load: \n",
      " The heat input is 2.093 kW \n",
      " The heat rejected is 2.093 kW \n",
      " (f) The overall efficiency of the combined thermo-electric steam power plant is 34.18 percent\n"
     ]
    }
   ],
   "source": [
    "from __future__ import division\n",
    "from math import sqrt\n",
    "#Input data\n",
    "P=100#Power in kW\n",
    "V=115#Voltage in V\n",
    "To=1500#Outer temperature in K\n",
    "Te=1000#Exit temperature in K\n",
    "Ta=350#Ambient temperature in K\n",
    "nth=30#Thermal efficiency in percent\n",
    "nge=92#Generator efficiency in percent\n",
    "#Properties of thermoelectrons \n",
    "a=0.0012#At 1250K in V/K\n",
    "kp=0.02#In W/cm.K\n",
    "kn=0.03#In W/cm.K\n",
    "dp=0.01#In ohm.cm\n",
    "dn=0.012#In ohm.cm\n",
    "J=20#Current density in A/cm**2\n",
    "\n",
    "#Calculations\n",
    "zmax=(a**2/(sqrt(dp*kp)+sqrt(dn*kn))**2)#Maximum value of figure of merit in K**-1\n",
    "mo=sqrt(1+(zmax*((To+Te)/2)))#Optimum value of the resistance ratio\n",
    "nmax=(((To-Te)/To)*((mo-1)/(mo+(Te/To))))*100#Maximum thermal efficiency in percent\n",
    "Vl=(a*(To-Te)*(mo/(mo+1)))#Voltage per couple in V\n",
    "nc=(V/Vl)#Number of couples in series\n",
    "L=((a*(To-Te))/((1+mo)*(dp+dn)))/J#Length in cm\n",
    "A=((P*Te)/V)/J#Area in cm**2\n",
    "I=(J*A)#Current in A\n",
    "Vo=(a*(To-Te))#Voltage in V\n",
    "Q1=((a*I*To)-((1/2)*(L/A)*I**2*(dp+dn))+((A/L)*(kp+kn)*(To-Te)))/1000#Heat input to the thermoelectric generator in kW\n",
    "Q2=((a*I*Te)+((A/L)*(kp+kn)*(To-Te))+P)/1000#Heat rejected at full load in kW\n",
    "Q1n=(((A/L)*(kp+kn)*(To-Te)))/1000#At no load heat input in kW\n",
    "Q2n=Q1n#At no load heat rejected in kW\n",
    "no=((nmax/100)+(1-(nmax/100))*(nth/100)*(nge/100))*100#Overall efficiency in percent\n",
    "\n",
    "#Output\n",
    "print \"(a) The thermal efficiency of thermocouple generator is %3.1f percent \\n (b) The number of thermo couples in series is %d \\n (c) The lenght of the thermal elements is %3.3f cm and area is %3.2f cm**2 \\n (d) The output open-circuit voltage is %3.1f V \\n (e) At full load: \\n The heat input is %3.3f kW \\n The heat rejected is %3.3f kW \\n At no load: \\n The heat input is %3.3f kW \\n The heat rejected is %3.3f kW \\n (f) The overall efficiency of the combined thermo-electric steam power plant is %3.2f percent\"%(nmax,nc,L,A,Vo,Q1,Q2,Q1n,Q2n,no)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}