summaryrefslogtreecommitdiff
path: root/Power_Plant_Engineering_by_P._K._Nag/Ch10.ipynb
blob: 9acec3f7e5d22309a475169bfed7dcc4ff861cfb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Chapter 10 : Hydroelecric power plant"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex: 10.1 Pg: 709"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 51,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      " (a) the efficiency of the runner is 93.17 percent \n",
      " (b) the diameter of each jet is 0.1614 m\n"
     ]
    }
   ],
   "source": [
    "from math import sqrt,cos,pi\n",
    "from __future__ import division\n",
    "#Input data\n",
    "P=4000#Power in kW\n",
    "N=400#Speed in r.p.m\n",
    "h=200#Head in m\n",
    "e=90#Efficiency in percent\n",
    "d=1.5#Diameter in m\n",
    "vd=10#Percentage decrease in velocity\n",
    "a=165#Angle with which jet is deflected in degrees\n",
    "\n",
    "#Calculations\n",
    "V1=sqrt(2*9.81*h*(e/100))#Velocity in m/s\n",
    "Vb=(3.14*d*N)/60#Velocity in m/s\n",
    "nn=((2*(1-((e/100)*cos(pi/180*a)))*(V1-Vb)*Vb)/V1**2)*100#Efficiency in percent\n",
    "p=(P/(nn/100))#Power developed in kW\n",
    "pj=(p/2)#Power developed per jet in kW\n",
    "dx=sqrt((pj*8)/(3.14*V1**3))#Diameter of each jet in m\n",
    "\n",
    "#Output\n",
    "print \" (a) the efficiency of the runner is %3.2f percent \\n (b) the diameter of each jet is %3.4f m\"%(nn,dx)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex: 10.2 Pg: 710"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      " (a) the number of jets are  3 \n",
      " (b) diameter of each jet is 0.123 m \n",
      " (c) diameter of the wheel is 1.23 m \n",
      " (d) the quantity of water required is 2.4 m**3/s\n"
     ]
    }
   ],
   "source": [
    "from math import sqrt\n",
    "#Input data\n",
    "P=6000#Power in kW\n",
    "h=300#Net head availabe in m\n",
    "N=550#Speed in r.p.m\n",
    "rd=(1/10)#Ratio of jet diameter to wheel diameter\n",
    "nh=0.85#Hydraulic efficiency \n",
    "Cv=0.98#Coefficient of velocity\n",
    "f=0.46#Speed ratio\n",
    "d=1000#Density in kg/m**3\n",
    "\n",
    "#Calculations\n",
    "V1=Cv*sqrt(2*9.81*h)#Velocity in m/s\n",
    "Vb=f*sqrt(2*9.81*h)#Velocity in m/s\n",
    "Q=((P*10**3)/(nh*d*9.81*h))#Discharge in m**3/s\n",
    "D=((Vb*60)/(3.14*N))#Diameter in m\n",
    "d=(D/10)#Diameter of jet in m\n",
    "n=(Q/((V1*(3.14/4)*d**2)))#Number of jets\n",
    "\n",
    "#Output\n",
    "print \" (a) the number of jets are%3.0f \\n (b) diameter of each jet is %3.3f m \\n (c) diameter of the wheel is %3.2f m \\n (d) the quantity of water required is %3.1f m**3/s\"%(n,d,D,Q)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex: 10.3 Pg: 711"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 52,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      " Diameter of jet is 0.183 m \n",
      " Diameter of bucket wheel is 3.61 m\n"
     ]
    }
   ],
   "source": [
    "from math import sqrt\n",
    "from __future__ import division\n",
    "#Input data\n",
    "P=10#Capacity in MW\n",
    "h=500#Head in m\n",
    "Ns=10#Specific speed of the turbine\n",
    "on=80#Overall efficiency in percent\n",
    "Cv=0.98#Coefficient of velocity\n",
    "x=0.46#Speed of the bucket wheel to the velocity of jet\n",
    "da=1000#Density in kg/m**3\n",
    "\n",
    "#Calculations\n",
    "N=(Ns*h**(5/4))/sqrt(P*10**3)#Speed in r.p.m\n",
    "V=(Cv*sqrt(2*9.81*h))#Velocity in m/s\n",
    "Vb=(x*V)#Speed of bucket wheel in m/s\n",
    "D=((60*Vb)/(3.14*N))#Diameter in m\n",
    "d=sqrt((P*10**6)/((on/100)*(3.14/4)*da*V*9.81*h))#Diameter in m\n",
    "\n",
    "#Output\n",
    "print \" Diameter of jet is %3.3f m \\n Diameter of bucket wheel is %3.2f m\"%(d,D)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex: 10.4 Pg: 711"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The specific speed of a single jet Pelton wheel is about 202 (d/D) where d and D represent the jet and bucket wheel diameters respectively\n"
     ]
    }
   ],
   "source": [
    "from math import sqrt\n",
    "#Input data\n",
    "Cv=0.97#Coefficient of velocity\n",
    "f=0.45#Friction coefficient\n",
    "h=0.85#Head in m\n",
    "d=1000#Density in kg/m**3\n",
    "n=1#For a single jet turbine\n",
    "\n",
    "#Calculations\n",
    "Ns=((60/3.14)*(f*sqrt(2*9.8))*sqrt(n*(3.14/4)*Cv*sqrt(2*9.8)*9.8*h))#Specific speed in terms of d/D \n",
    "\n",
    "#Output\n",
    "print \"The specific speed of a single jet Pelton wheel is about %3.0f (d/D) where d and D represent the jet and bucket wheel diameters respectively\"%(Ns)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex: 10.5 Pg: 712"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 53,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      " Velocity of the jet for maximum efficiency is  90 m/s \n",
      " Power developed is 4050 kW \n",
      " Hydraulic efficiency is 98.3 percent\n"
     ]
    }
   ],
   "source": [
    "from math import cos,pi\n",
    "#Input data\n",
    "n=4#Number of jets\n",
    "d=60#Diameter of each jet in mm\n",
    "a=165#Angle in degrees\n",
    "v=45#Speed of the bucket wheel in m/s\n",
    "de=1000#Density in kg/m**3\n",
    "\n",
    "#Calculations\n",
    "v1=(2*v)#Jet velocity in m/s\n",
    "Q=(3.14/4)*(d/1000)**2*v1#Discharge in m**3/s\n",
    "P=(1-cos(pi/180*a))*(v1**2/4)*Q*de*10**-3#Power developed in kW\n",
    "P4=(P*4)#For four jets in kW\n",
    "nd=((1-cos(pi/180*a))/2)*100#Maximum efficiency in percent\n",
    "\n",
    "#Output\n",
    "print \" Velocity of the jet for maximum efficiency is %3.0f m/s \\n Power developed is %d kW \\n Hydraulic efficiency is %3.1f percent\"%(v1,P4,nd)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex: 10.6 Pg: 713"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      " Head on the wheel is 43.3 m \n",
      " The power generated by the turbine is 238 kW \n",
      " Eit angle of guide vanes is 173.29 degrees and Inlet blade angle is 33.7 degrees\n"
     ]
    }
   ],
   "source": [
    "from math import atan, degrees\n",
    "#Input data\n",
    "v=20#Peripheral velocity in m/s\n",
    "vw=17#Velocity of whirl in m/s\n",
    "vr=2#Radial velocity in m/s\n",
    "Q=0.7#Flow in m**3/s\n",
    "hn=80#Hydraulic efficiency in percent\n",
    "d=1000#Density in kg/m**3\n",
    "\n",
    "#Calculations\n",
    "H=((vw*v)/(9.81*(hn/100)))#Head on the wheel in m\n",
    "P=(d*Q*9.81*H*(hn/100)*10**-3)#Power generated in kW\n",
    "al=180-degrees(atan(vr/vw))#Angle of guide vanes in degrees\n",
    "bl=degrees(atan(vr/(v-vw)))#Inlet blade angle in degrees\n",
    "\n",
    "#Output\n",
    "print \" Head on the wheel is %3.1f m \\n The power generated by the turbine is %3.0f kW \\n Eit angle of guide vanes is %3.2f degrees and Inlet blade angle is %3.1f degrees\"%(H,P,al,bl)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex: 10.7 Pg: 714"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 54,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      " Inlet blade angle is  35 degrees  38 minutes \n",
      " Outlet blade angle is  17 degrees  16 minute\n"
     ]
    }
   ],
   "source": [
    "from math import atan,tan,pi,sqrt,degrees\n",
    "#Input data\n",
    "od=1.5#Outer diameter in m\n",
    "id=0.75#Inner diameter in m\n",
    "h=150#Head in m\n",
    "P=14000#Power in kW\n",
    "Ns=120#Specific speed \n",
    "vw2=0#Velocity in m/s\n",
    "a=(11+(20/60))#Angle in degrees\n",
    "hn=92#Hydraulic efficiency in percent\n",
    "\n",
    "#Calculations\n",
    "N=(Ns*h**(5/4))/sqrt(P)#Speed in rpm\n",
    "vb1=(3.14*od*N)/60#velocity in m/s\n",
    "vw1=(((hn/100)*9.81*h)/vb1)#velocity in m/s\n",
    "vf1=(tan(pi/180*a)*vw1)#Velocity in m/s\n",
    "vf2=vf1#Velocity in m/s\n",
    "b1=degrees(atan(vf1/(vb1-vw1)))#Angle in degrees\n",
    "b1x=(b1-int(b1))*60#For output\n",
    "vb2=(vb1/2)#Velocity in m/s\n",
    "b2=degrees(atan(vf1/(vb2-vw2)))#Angle in degrees\n",
    "b2x=(b2-int(b2))*60#For output\n",
    "\n",
    "#Output\n",
    "print \" Inlet blade angle is %3.0f degrees %3.0f minutes \\n Outlet blade angle is %3.0f degrees %3.0f minute\"%(b1,b1x,b2,b2x)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex: 10.8 Pg: 715"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 55,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      " (a)the guide vane angle is 13.3 degrees \n",
      " (b)the runner vane angle at inlet is 26.6 degrees and outlet is 41.72 degrees \n",
      " (c)the diametres of the runner at inlet is 0.5 metre and outlet is 0.25 metre\n",
      " (d)the width of the wheel at inlet is 0.05 metre\n"
     ]
    }
   ],
   "source": [
    "from math import sqrt,pi,atan,degrees\n",
    "#Input data\n",
    "h=70#net head in m\n",
    "N=700#speed in rpm\n",
    "o=85#over all efficiency in %\n",
    "P=350#shaft power in kW\n",
    "he=92#hydraulic efficiency in %\n",
    "fr=.22#flow ratio\n",
    "b=.1#breadth ratio\n",
    "s=2#outer diameter in terms of inner diametre\n",
    "#Calculations\n",
    "vf1=fr*sqrt(2*9.81*h)#velocity in m/s\n",
    "q=(P/(9.81*h*(o/100)))#discharge in m**3/s\n",
    "d1=sqrt(q/(.94*b*vf1*3.14))#diameter in metre\n",
    "b1=d1*b#breadth in metre\n",
    "d2=d1/2#diametre in metre\n",
    "vb1=(3.14*d1*N)/60#velocity in m/s\n",
    "vw1=((he/100)*9.81*h)/vb1#velcity in m/s\n",
    "a=degrees(atan(vf1/vw1))#angle in degrees\n",
    "bet=degrees(atan(vf1/(vw1-vb1)))#angle in degrees\n",
    "vb2=(d2/d1)*vb1#velocity in m/s\n",
    "bet2=degrees(atan(vf1/vb2))#angle in degrees\n",
    "\n",
    "#Output\n",
    "print \" (a)the guide vane angle is %3.1f degrees \\n (b)the runner vane angle at inlet is %3.1f degrees and outlet is %3.2f degrees \\n (c)the diametres of the runner at inlet is %3.1f metre and outlet is %3.2f metre\\n (d)the width of the wheel at inlet is %3.2f metre\"%(a,bet,bet2,d1,d2,b1)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex: 10.9 Pg: 717"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      " (a) the discharge of the turbine is 15.34 m**3/s \n",
      " (b) the jet diameter is 0.227 m \n",
      " (c) the nozzle tip diameter is 0.284 m \n",
      " (d) the pitch circle diameter of the wheel is 2.89 m \n",
      " (e) the specific speed is 69.04 \n",
      " (f) the number of buckets on the wheel are  22 \n",
      " (g) the workdone per kg of water on the wheel is 443.02 kg.m/kg \n",
      " (h) the hydraulic efficiency is  93 percent\n"
     ]
    }
   ],
   "source": [
    "from math import ceil,sqrt,cos,pi\n",
    "#Input data\n",
    "n=4#Number of units\n",
    "P=70000#Power in kVA\n",
    "f=50#Frequency in Hz\n",
    "p=10#No.of pair of poles\n",
    "h=505#Gross head in m\n",
    "tn=94#Transmission efficiency in percent\n",
    "po=260#Power in MW\n",
    "e=91#Efficiency in percent\n",
    "nn=0.98#Nozzle efficiency\n",
    "Cv=0.98#Coefficient of velocity\n",
    "x=0.48#Vb=0.48 V\n",
    "dd=25#Nozzle diameter is 25% bigger than jet diameter\n",
    "a=165#Angle of buckets in degrees\n",
    "de=99.75#Discharge efficiency in percent\n",
    "\n",
    "#Calculations\n",
    "N=(120*f)/(p*2)#Synchronous speed in r.p.m\n",
    "nh=((tn/100)*h)#Net head in m\n",
    "pt=(po*10**3)/n#Power developed per turbine in kW\n",
    "ip=(pt/(e/100))#Input water power in kW\n",
    "Q=(ip/(9.81*nh))#Discharge in m**3/s\n",
    "Qj=(Q/n)#Discharge per jet in m**3/s\n",
    "V1=Cv*sqrt(2*9.81*nh)#Velocity in m/s\n",
    "d=sqrt((4/3.14)*(Qj/V1))#Diameter of jet in m\n",
    "nd=(1+(dd/100))*d#Nozzle tip diameter in m\n",
    "Vb=(x*V1)#Velocity in m/s\n",
    "D=((Vb*60)/(3.14*N))#Pitch circle diameter of the wheel in m\n",
    "Ns=((N*sqrt(po*10**3))/nh**(5/4))#Specific speed\n",
    "jr=(D/d)#Jet ratio\n",
    "nob=(jr/2)+15#Number of buckets\n",
    "nobb=ceil(nob)#Rounding off to next integer\n",
    "W=((V1-Vb)*(1-(nn*cos(pi/180*a)))*Vb)/9.81#Workdone per kg in kg.m/kg\n",
    "nth=((W/nh)*de)#Hydraulic efficiency in percent\n",
    "\n",
    "#Output\n",
    "print \" (a) the discharge of the turbine is %3.2f m**3/s \\n (b) the jet diameter is %3.3f m \\n (c) the nozzle tip diameter is %3.3f m \\n (d) the pitch circle diameter of the wheel is %3.2f m \\n (e) the specific speed is %3.2f \\n (f) the number of buckets on the wheel are %3.0f \\n (g) the workdone per kg of water on the wheel is %3.2f kg.m/kg \\n (h) the hydraulic efficiency is %3.0f percent\"%(Q,d,nd,D,Ns,nobb,W,nth)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex: 10.10 Pg: 718"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 56,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      " Blade angle at inlet is  62 degrees \n",
      " Hydraulic efficiency is  81 percent\n"
     ]
    }
   ],
   "source": [
    "from math import sin,cos,degrees,atan,sqrt,pi\n",
    "#Input data\n",
    "gh=35#Gross head in m\n",
    "md=2#Mean diameter in m\n",
    "N=145#Speed in rpm\n",
    "a=30#Angle in degrees\n",
    "oa=28#Outlet angle in degrees\n",
    "x=7#Percentage of gross head lost\n",
    "y=8#Reduction in relative velocity in percent\n",
    "\n",
    "#Calculations\n",
    "H=((100-x)/100)*gh#Net haed in m\n",
    "V1=sqrt(2*9.81*H)#Velocity in m/s\n",
    "Vb=(3.14*md*N)/60#Velocity in m/s\n",
    "b1=degrees(atan((V1*sin(pi/180*a))/((V1*cos(pi/180*a))-Vb)))#Angle in degrees\n",
    "Vr1=((V1*sin(pi/180*a))/sin(pi/180*b1))#Velocity in m/s\n",
    "Vr2=((100-y)/100)*Vr1#Velocity in m/s\n",
    "Vw1=(V1*cos(pi/180*a))#Velocity in m/s\n",
    "Vw2=(Vb-(Vr2*cos(pi/180*oa)))#Velocity in m/s\n",
    "E=((Vb*(Vw1-Vw2))/9.81)#Workdone in kg.m/kg\n",
    "nb=(E/gh)*100#Hydraulic efficiency in percent\n",
    "\n",
    "#Output\n",
    "print \" Blade angle at inlet is %3.0f degrees \\n Hydraulic efficiency is %3.0f percent\"%(b1,nb)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex: 10.11 Pg: 719"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      " (a) the speed is 166.7 rpm \n",
      " (b) the diameter of the runner is 3.56 m \n",
      " (c) the specific speed is 746\n"
     ]
    }
   ],
   "source": [
    "from math import sqrt\n",
    "#Input data\n",
    "P=10000#Power in kW\n",
    "h=12#Head in m\n",
    "Nr=2#Speed ratio\n",
    "Fr=0.65#Flow ratio\n",
    "x=0.3#Diameter of hub is 0.3 times the eternal diameter of the vane \n",
    "on=94#Overall efficiency in percent\n",
    "\n",
    "#Calculations\n",
    "Q=(P/(9.81*h*(on/100)))#Discharge in m**3/s\n",
    "Vr1=(Fr*sqrt(2*9.81*h))#Velocity in m/s\n",
    "Ab=(Q/Vr1)#Area of flow in m**2\n",
    "D=sqrt(((Ab*4)/3.14)/(1-x**2))#Diameter of runner in m\n",
    "Vb=(Nr*sqrt(2*9.81*h))#Velocity in m/s\n",
    "N=((Vb*60)/(3.14*D))#Speed in rpm\n",
    "f=50#Taking frequency as 50 Hz\n",
    "p=(120*50)/N#Number of poles\n",
    "N1=(120*f)/int(p)#Speed in rpm\n",
    "Ns=(N1*sqrt(P))/h**(5/4)#Specific speed\n",
    "\n",
    "#Output\n",
    "print \" (a) the speed is %3.1f rpm \\n (b) the diameter of the runner is %3.2f m \\n (c) the specific speed is %3.0f\"%(N1,D,Ns)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex: 10.12 Pg: 721"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      " Specific speed is 241.5 \n",
      " Normal speed is 120.7 rpm \n",
      " Output under a head of 20 m is 7155 kW\n"
     ]
    }
   ],
   "source": [
    "from math import sqrt\n",
    "#Input data\n",
    "P=10000#Power in kW\n",
    "h=25#Head in m. In textbook it is given wrong as 2 m\n",
    "N=135#Speed in rpm\n",
    "h1=20#Head in m\n",
    "\n",
    "#Calculations\n",
    "Ns=((N*sqrt(P))/h**(5/4))#Specific speed\n",
    "N1=sqrt(h1/h)*N#Speed in rpm\n",
    "P2=P/(h/h1)**(3/2)#Power in kW\n",
    "\n",
    "#Output\n",
    "print \" Specific speed is %3.1f \\n Normal speed is %3.1f rpm \\n Output under a head of %d m is %3.0f kW\"%(Ns,N1,h1,P2)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex: 10.13 Pg: 721"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The number of turbines in \n",
      " (a) Francis turbine are  2 \n",
      " (b) Kaplan turbine are 4\n"
     ]
    }
   ],
   "source": [
    "from math import ceil\n",
    "#Input data\n",
    "Q=175#Discharge in m**3/s\n",
    "h=18#Head in meter\n",
    "N=150#Speed in rpm\n",
    "oe=82#Overall efficiency in percent\n",
    "Ns1=460#Maximum specific speed\n",
    "Ns2=350#Maximum specific speed\n",
    "d=1000#Density in kg/m**3\n",
    "\n",
    "#Calculations\n",
    "P=(d*Q*9.81*h*(oe/100)*10**-3)#power in kW\n",
    "P1=((Ns1*h**(5/4))/N)**2#Power in kW\n",
    "n1=P/P1#No.of turbains\n",
    "P2=((Ns2*h**(5/4))/N)**2#Power in kW\n",
    "n2=ceil(P/P2)#No.of turbains\n",
    "\n",
    "#Output\n",
    "print \"The number of turbines in \\n (a) Francis turbine are%3.0f \\n (b) Kaplan turbine are %d\"%(n1,n2)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex: 10.14 Pg: 722"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      " Speed is 285 rpm \n",
      " Power is 23.309 kW \n",
      " Scale ratio is 5.518 \n",
      " Flow through the turbine is 63.6 m**3/s\n"
     ]
    }
   ],
   "source": [
    "from math import sqrt\n",
    "#Input data\n",
    "Ns=210#Specific speed \n",
    "P=30#Power in MW\n",
    "N=180#Speed in rpm\n",
    "Q=0.6#Discharge in m**3/s\n",
    "h=4.5#Head in m\n",
    "e=88#Efficiency in percent\n",
    "d=1000#Density in kg/m**3\n",
    "\n",
    "#Calculations\n",
    "Pm=(d*Q*9.81*h*(e/100)*10**-3)#Power in kW\n",
    "Nm=(Ns*h**(5/4))/sqrt(Pm)#Speed in rpm\n",
    "Hp=((N*sqrt(P*1000))/Ns)**(4/5)#Head in m\n",
    "Dpm=(Nm/N)*sqrt(Hp/h)#Scale ratio\n",
    "Qp=(P*10**6)/(d*9.81*Hp*(e/100))#Discharge in m**3/s\n",
    "\n",
    "#Output\n",
    "print \" Speed is %3.0f rpm \\n Power is %3.3f kW \\n Scale ratio is %3.3f \\n Flow through the turbine is %3.1f m**3/s\"%(Nm,Pm,Dpm,Qp)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex: 10.15 Pg: 723"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 36,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      " Speed is 402 rpm \n",
      " Power is 11180 kW\n"
     ]
    }
   ],
   "source": [
    "from math import sqrt\n",
    "#Input data\n",
    "x=1/5#Scale model\n",
    "h=1.5#Head in m\n",
    "P=5#Power in kW\n",
    "N=450#Speed in rpm\n",
    "h1=30#Head in m\n",
    "\n",
    "#Calculations\n",
    "N1=(x*N)/sqrt(h/h1)#Speed in rpm\n",
    "Ns=(N*sqrt(P))/h**(5/4)#Specific speed\n",
    "P1=((Ns*h1**(5/4))/N1)**2#Power in kW\n",
    "\n",
    "#Output\n",
    "print \" Speed is %3.0f rpm \\n Power is %3.0f kW\"%(N1,P1)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex: 10.16 Pg: 723"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 38,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      " Speed of the turbine is 307.8 rpm \n",
      " Maximum flow rate is 1.5 m**3/s\n"
     ]
    }
   ],
   "source": [
    "from math import sqrt\n",
    "#Input data\n",
    "h=19#Head in m\n",
    "Q=3#Flow rate in m**3/s\n",
    "N=600#Speed in rpm\n",
    "h1=5#Head in m\n",
    "\n",
    "#Calculations\n",
    "N1=N/sqrt(h/h1)#Speed in rpm\n",
    "Q1=Q/sqrt(h/h1)#Discharge in m**3/s\n",
    "\n",
    "#Output\n",
    "print \" Speed of the turbine is %3.1f rpm \\n Maximum flow rate is %3.1f m**3/s\"%(N1,Q1)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex: 10.17 Pg: 724"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 39,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Least number of machines required if using \n",
      " (a) Francis turbines are  13 \n",
      " (b) Kaplan turbines are   2\n"
     ]
    }
   ],
   "source": [
    "from math import ceil\n",
    "#Input data\n",
    "Q=350#Discharge in m**3/s\n",
    "h=30#Head in m\n",
    "e=87#Turbine efficiency in percent\n",
    "f=50#Frequency in Hz\n",
    "p=24#Number of poles\n",
    "Ns1=300#Specific speed\n",
    "Ns2=820#Specific speed\n",
    "d=1000#Dnsity of water in kg/m**3\n",
    "\n",
    "#Calculations\n",
    "N=(120*f)/p#Speed in rpm\n",
    "P=d*Q*9.81*h*(e/100)*10**-3#Power in kW\n",
    "P1=((Ns1*h**(5/4))/N)**2#Power in kW\n",
    "n1=P/P1#No.of turbines\n",
    "P2=((Ns2*h**(5/4))/N)**2#Power in kW\n",
    "n2=ceil(P/P2)#No.of turbines\n",
    "\n",
    "#Output\n",
    "print \"Least number of machines required if using \\n (a) Francis turbines are %3.0f \\n (b) Kaplan turbines are %3.0f\"%(n1,n2)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex: 10.18 Pg: 725"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 41,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      " (a) Power developed is 2302 kW \n",
      " (b) As the available head is low, Kaplan turbines are suggested.\n",
      " Two turbines each of 3000kW capacity may be installed.\n"
     ]
    }
   ],
   "source": [
    "#Input data\n",
    "h=27#Head in m\n",
    "A=430#Area in sq.km\n",
    "R=150#Rainfall in cm/year\n",
    "pr=65#Percentage of rainfall utilised\n",
    "pe=95#Penstock efficiency in percent\n",
    "te=80#Turbine efficiency in percent\n",
    "ge=86#Generator efficiency in percent\n",
    "lf=0.45#Load factor\n",
    "d=1000#Density of water in kg/m**3\n",
    "\n",
    "#Calculations\n",
    "Q=A*10**6*(R/100)*(pr/100)#Discharge in m**3 per year\n",
    "Qs=(Q/(365*24*3600))#Quantity of water per second in m**3\n",
    "P=(pe/100)*(te/100)*(ge/100)*d*Qs*9.81*h*10**-3#Power in kW\n",
    "plc=(P/lf)#Peak load capacity in kW\n",
    "C=(plc/(2*(ge/100)))#Capacity of each unit in kW\n",
    "\n",
    "#Output\n",
    "print \" (a) Power developed is %3.0f kW \\n (b) As the available head is low, Kaplan turbines are suggested.\\n Two turbines each of 3000kW capacity may be installed.\"%(P)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex: 10.19 Pg: 725"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 50,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEZCAYAAACTsIJzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYJWV99vHvDYjs0CM6wz6AQQQRIUpQNDYqCQREsggS\nRUSTEI2i4AIT3zdMTPRFjDsSXyMgoCCIiqIgINKCgoLsgoCIoywyLDNssjN3/qinZ85puntOnz5b\n19yf65prTu2/Oqe6fvU8T9VTsk1ERMSolfodQEREDJYkhoiIaJLEEBERTZIYIiKiSRJDREQ0SWKI\niIgmSQwDQtJ/S/o/01j+bZIu7mRM0yFpG0mXt7nsppIekqQyPCLpHeVz036W+eZ2IuZ4puUdV5LO\nkLR7L2PqJUlLJG3R7zh6LYmhByQtkPSIpAclLZb0U0kHj574AGy/0/Z/9jPODvsP4BPtLGj797bX\n9rKHbFz+jTfv2rYXtBdiZ0k6oZXxknaVdG05FhZJOk/SNmPmWVXSPZLW6GbMY7Y5t5wIp3Je+DjQ\n9eO2/A09Luk5Y8ZfVWLetAPbWHoBsqJLYugNA3vZXgfYFDgKOBw4rq9RTUDSKtNcfgNgGDizIwEN\nOElHS3pR+byGpE+VUs9/j56wJD1H0v+XtDpwPbCH7SFgNnAVcPyY1f45cJXtR3q4K6O0/Fkqti8H\n1pH0p12MB6q/oVuB/UdHSNoOWJ0JLhra3EaQxNBzth+yfRawH3Dg6JWipK9I+o/yeX1J3ytXlPdJ\nuqihWmUTSd+SdLekeyV9vnH9kj5RrkJvbSziSzpI0g2l1PIbSf/UMG1Y0u2SPiTpD8BxklaTdGJZ\n1w1l2m0Ny2wo6ZsljlslvachjN2AK2w/0TD/AkkfKFfKD0k6TtJsSedIekDS+ZLWK/O2fOXaWNSX\ntK6kk0pMCyR9uOF7e5ukn0z0/Yyz3pbjpbpq/mdgV+Ak4Azbvwf+H/AR4FXAF4DP2n7U9t227yjL\nrgQsAf4wJoS/As4usYxI+o9S0nxI0nfLMfK1EstlkjZriP0Vki6XdH+Z9vKGaSOSPlK+iwclndtw\nFX5R+f/+Mm1nyslyOd/bCLDnBN/jryTt2TC8iqqS0EvKMfbVchwvLrE+b6LfBPgq8NaG4QOpvu+l\niazdY0DSR6l+p2PKd/y5hu3sJunmEuMxk8RXG0kMfVKutG6nOhihubrk/cBtwPrA84B5ti1pZeB7\nwG+BzYCNgFMbVvtnwI3Ac4CjaS6RLAT2LKWWg4BPS9qhYfpsYIiqRHMwML983pzqRP8Wlp0kVgLO\norrS3RB4LfA+SX9R1rUdcNPYXQb+psz7AmAv4BzgiLKPKwGHTPqlLd/ngbVLzK+mOokc1DB9Jyb+\nfsaaSryiOrmPLqcx4zVm/Gg7ymLgEaqT6tgqjD2A7zcM70f1G2wEbAlcWuKfBfwKOLKsd1ZZ7jNl\n2qeA70saaljX/sDbyn6sCnygjB89Fte1vY7tn5WYJzuuKNvfnvGdQsNVPvCXwN22r6Y6sa8DbFxi\nPRh4dIL1APyMqnSydflb2I8qWTRq6xiw/WHgYuBfSvVk47G4J/BS4MXAvpL+cpIYayGJob/upPqD\nGOsJYANgru2nbf+0jN+pjP9gufJ83PYlDcv9zvZxpW7+JGCD0Ssw22fb/m35fBFwHstOBFCdwI60\n/aTtx4A3Ah+z/UC5uv0sy05sLwPWt/2ftp8q6/0y8KYyfV3g4XH26/O277F9J9Uf4aW2r7H9OPBt\nYIdxlmlJw4linu0/2v4d8EnggFa+nwm0Gu+HgC8BF1Kd7P5OVRXSEVQJ9iLg3cAhqqqSRttRhqiS\n/zXA0nYISVsCq9j+dRll4ATbv7X9IFWCutn2j2w/DXyjIZY9gZtsf832EttfpzoR7j1mXbeU3/l0\n4CWjm57ge1je9/YwsN74i3IKsLek1crw37PsYuYJqhP0n7hyle2HJljPqJOpTva7ATcAoyWvTh0D\n430HR9l+0PZtVL/xS8aZp1aSGPprY2BRw/DoQfkJ4BbgPFXVPoeX8ZtQHdhLGN9dox8a6qbXApC0\nh6SfqaqaWkxVVdHYkHdPY9UPVUngtobh2xs+bwZsWIrWi8v65lFdgQIsprpqG2thw+dHxww/Nhpr\nm9YHngX8rmHc76musEdN+P1MoKV4bX/I9i9H12v70HLif2epUsL2fbYPtt10RWx7MdUV++slrVNG\nL61GmiCWx4C7x4uF6nf7/Zhlf1fGj7qr4fOjLP97X973tjZw/3gL2v4NVYlib1UN6a+nShZQneTP\nBb4u6Q5JH9fk7Vsuy7yZcaqR6MwxMF47Q+P39QjTO05nhCSGPpH0Mqo/1p+MnWb7YdsfsL0l1ZXe\nYZJeQ3WQb1qujKayrWcD36QqOj+vXKmeTfMf1dg/iD9QJaJRjZ9vA35re6jh3zq29yrTrwW2aiW0\nqezHctwLPAnMbRi3Kc0Jbbomjdf2QVMZ3+BZVCW2x8vweImhaZWTTLuDKnE32oyGK+s21zuZFwJX\nTzL9VKrqpDcA19u+FaCUNj9ie1vgFVTVdW+deDVVSYuqEXoP4FtjJk/3GEjjc5HE0DujDWDrSNqL\n6o/lZNvXN04v8+wl6fml0exB4Ony7zKqE/ZRqu5+WU3SK1rY9qrl373AEkl7AH8x+SKcDsyTtJ6k\njaiqQkb/cC4DHlLVIL26pJUlvUjSS8v0HwI7Slq1hdg6olSpnA58VNJapTH2UJ5ZB913kv5a0laS\nVpL0XKp2gLNtP16uql9GVWXRtNgEn8c6B9hK0v6loXc/YGuqtqnlLX8PVYLacir7Q3UH1TmTTP86\nVdvCP7OstDB608N25ULnIaqT+tMtbO8dwGvGKX1N9xhYyPL3vZMXMwMriaF3zpL0INVV/zyqus/G\nK8nGxufnA+dT/bFcAnzB9o9LFdLry/TfU1257zvO8o3rpNTbHkL1R7OI6urtO+PN2+AjVFdav6Vq\nj/gGVZ3w6B/gXlR1rbdSnVC+RNWQiO2FwI+AfZbznXjM57HDEy0z0XzvAf5YYroY+BrL6u4n/H6m\nYLJ4p2Ij4AdUSf9Kqqq3A8u01wCXjKnWa2Xbo7/1fVS/zfupLgQ+QHWr9KKx845dV6la+Sjw03LX\nzp9Nti1YWvJ9yPYvJtpZ23dRHccvB05rmDSH6rh6gKq9YISqqmhStm+1feUE+zOdY+CzVO1DiyR9\nZqLNj7OO2pG79KIeScdTNYTdbXu7Mu4TVAftE8BvgINsP1CmzQPeTnXFcIjt87oSWLRF0juBfW3v\n2uL8LwROtL1TdyOrF0lfAK6z/cV+x9IKSWcAX7b9g37HEp3TzRLDCcDY+53PA7a1vT1wM9WVM6ru\n5d8P2KYsc6ym9vRldJikOZJ2KdUdLwAOo7oTpyW2f5Wk0JarmcL33G+2/y5JoX66dvK1fTFVEblx\n3PkNd9T8nOquHKgapU4tt0ouoLojJyeV/loV+CJVdccFVE8xH9vXiFYAtv+nVMVF9M20uj6Yprez\n7H7mDakeXhl1O823mEWPlbs/tut3HBHRe32prpH0YeAJ26dMMlvtG3giIgZRz0sMkt5GdZ/2axtG\n30HzffIbM85915KSLCIi2mC75Vtte1piKB1WfRB4Q3kcf9R3gTep6mp4c+BPqO6Vfwbbtf135JFH\n9j2G7F/2b0Xcvzrvmz316+mulRgknUrVidX6qnrlPJLqLqRVgfNLh4eX2n6X7RsknU51L/NTwLvc\nzt5ERMS0dS0x2N5/nNFj+5xvnP9jwMe6FU9ERLQmzwoMkOHh4X6H0FXZv5mtzvtX531rR9eefO4G\nSalhioiYIkl4UBufIyJi8CUxREREkySGiIhoksQQERFNkhgiIqJJEkNERDRJYoiIiCZJDBER0SSJ\nISIimiQxREREkySGiIhoksQQERFNkhgioiWzZoHUu3+zZvV7j1dc6V01IloiQS///Hq9vTpL76oR\nETEtSQwREdEkiSEiIpokMURERJMkhoiIaJLEEBERTZIYIiKiSRJDREQ0SWKIiIgmSQwREdEkiSEi\nIpokMURERJOuJQZJx0taKOm6hnGzJJ0v6WZJ50lar2HaPEm/lnSjpL/oVlwRETG5bpYYTgB2HzPu\nCOB821sBF5RhJG0D7AdsU5Y5VlJKMxERfdC1k6/ti4HFY0bvDZxYPp8I7FM+vwE41faTthcAtwA7\ndSu2iIiY2CrLm0HStsCfA3MBAwuAi21f38b2ZtteWD4vBGaXzxsCP2uY73ZgozbWHxER0zRhiUHS\nAZIuA/4LmAPcSpUUNgD+S9Llkt7S7obLG3cmew1HXtEREdEHk5UYhoDX2n5ovImS1gHeNsXtLZQ0\nx/ZdkjYA7i7j7wA2aZhv4zLuGebPn7/08/DwMMPDw1MMIaIeZs2CxWMra7toaKh324rpGRkZYWRk\npO3lu/pqT0lzgbNsb1eGjwbus/1xSUcA69k+ojQ+n0LVrrAR8EPg+WPf45lXe0YsU/dXX9Z9/3pp\nqq/2bKWN4XnAP1K1MYzOb9tvX85ypwKvBtaXdBvwb8BRwOmS3kFVLbVvWdkNkk4HbgCeAt6VDBAR\n0R/LLTFIuhS4CLgCWFJG2/Y3uxzbeLEkX0QUdb+irvv+9dJUSwytJIarbb9k2pF1QBJDxDJ1P3HW\nff96aaqJoZXnGL4nac9pxBQRETPIhCUGSQ+z7JbRNYEngCfLsG2v0/3wnhFTSgwRRd2vqOu+f73U\nscZn22t1JqSIiJhJlluVJOmCVsZFREQ9TFhikLQ6sAbwXEmzGiatQ7qriIiorcmeYzgYeC9VP0ZX\nNIx/CDimm0FFRET/tHK76iG2P9ejeCaVxueIZereOFv3/euljj/HUFb6CpqffMb2Se0EOB1JDBHL\n1P3EWff966VudInxVWAL4Grg6YZJPU8MERHRfctNDMCfAtvkUj0iYsXQypPPv6R6B0NERKwAWikx\nPBe4oby05/Eyzrb37l5YERHRL60khvnl/9GqJJG3q0VE1FardyXNAV5GlRAus333chbpityVFLFM\n3e/aqfv+9VLHe1eVtC/wc+CNVC/WuUzSG9sPMSIiBlkrD7hdC7xutJQg6bnABbZf3IP4xsaSEkNE\nUfcr6rrvXy91430MAu5pGL6vjIuIiBpqpfH5B8C5kk6hSgj7Aed0NaqIiOibVqqSBPwNsEsZdbHt\nb3c7sAliSVVSRFH3qpa6718vdaWvpLLidalKGAawvaitCKchiSFimbqfOOu+f73Ujb6SDgb+nerh\ntiVltKn6T4qIiJpppSrpFmBn2/f2JqRJY0mJIaKo+xV13fevl7pxV9KtwKPthxQRETNJKyWGHYGv\nAJcCT5TRtn1Id0MbN5aUGCKKul9R133/eqnjbQzAl4AfAtdRtTGkr6SIiBprJTGsbPuwrkcSERED\noZU2hnMkHSxpA0mzRv91PbKIiOiLVtoYFvDMqiPb7vntqmljiFim7nXwdd+/XurYA26SNrR9Z8ci\na173POAtVG0W1wEHAWsCpwGbAQuAfW3fP2a5JIaIou4nzrrvXy91MjGcA8wCLqTqL+kntp/qQIBz\ngR8BL7T9uKTTgLOBbYF7bR8t6XBgyPYRY5ZNYogo6n7irPv+9VLHnmOwvQcwDPyYqq+kn0n6tqR/\nkrTpNGJ8EHgSWEPSKsAawJ3A3sCJZZ4TgX2msY2IiGhTy30lAUjaAtgD+Etgju2d2tqo9E/AJ6ke\nnDvX9gGSFtseKtMFLBodblguJYaIou5X1HXfv17qxnMMS9m+FfgC8AVJz55qcACStgTeB8wFHgC+\nIektY7ZjSeMeEvPnz1/6eXh4mOHh4XbCiOi4WbNg8eLebW9oaPnzxIppZGSEkZGRtpefrI1he6qr\n+nuBecDxwI7AtcBBtm9pa4PSfsButv+hDB8A7Ay8BtjV9l2SNgAutL31mGVTYoiBlSvczsr32Tmd\n7Cvpi8Bnge8Al1A9AT0EHA0cO40YbwR2lrR6qTJ6HXADcBZwYJnnQODMaWwjIiLaNFmJ4SrbO5TP\nt9h+/njT2tqo9CGqk/8S4ErgH4C1gdOBTcntqjED5Qq3s/J9dk4nb1e91vaLy+d32T62Ydovbb9o\n2tFOURJDDLKcyDor32fndLIq6VhJawOMSQrPp+pULyIiamjS21UlrWb7sdH/exjXRPGkxBADK1e4\nnZXvs3M6/aKeL0panek1NkdExAwyYWKQ9GrgF8BFwBVlOCIiam55JYYlZZ4U6CIiVhCTJYaLgJ2A\nVwEvtf3j3oQUERH9lMbniA5JY2ln5fvsnDQ+R0TEtKTxOSIimqTxOSIimqTxOSIimqTxOaJD0lja\nWfk+O6ejL+opSWEL4D3lXc2rLJvkvduOMiIiBlYrb3A7E/gy1fsSlpRxyeMRETXVSmJ4zPbnuh5J\nREQMhEnbGGDpqze3BM4FHh8db/vK7oY2bixpY4iBlTrxzsr32TkdbWMotgUOAHZlWVUSZTgiImqm\nlRLDb4AX2n6iNyFNGktKDDGwcoXbWfk+O6fTXWIAXAcMtR9SRETMJK1UJQ0BN0q6nGVtDLldNSKi\nplpJDEeOMy4FvIiImlpuG8MgSRtDDLLUiXdWvs/O6UYbQ0RErEBaqUqKiOi5oaGq1NCrbS1a1Jtt\nzQSpSorokFR9zFx1/+06/oCbpFdSNUDPpbkTvS3aijAiIgZaKw+43QS8D7gSeHp0vO17uxvauLGk\nxBADq+5XnXVW99+uG11i3G/7nGnEFBERM0grJYajgJWBb9GhTvQkrUfVlfe2VM9EHAT8GjgN2AxY\nAOxr+/4xy6XEEAOr7leddVb3326qJYZWEsMI4zzQZrvtTvQknQj82PbxklYB1gQ+DNxr+2hJhwND\nto8Ys1wSQwysup9c6qzuv13HE0OnSVoXuGps47WkG4FX214oaQ4wYnvrMfMkMcTAqvvJpc7q/tt1\n/AE3SetJ+rSkK8q/T5aTe7s2B+6RdIKkKyX9j6Q1gdm2F5Z5FgKzp7GNiIhoUyuNz8dT9bD6RkBU\n72Y4AfibaWxzR+Ddti+X9BmgqcrItiWNm7/nz5+/9PPw8DDDw8NthhERUU8jIyOMjIy0vXwrbQzX\n2N5+eeNa3mBVTXSp7c3L8CuBecAWwK6275K0AXBhqpJiJql7dUSd1f2360ZfSY9KelXDBl4JPNJO\ncAC27wJuk7RVGfU64HrgLODAMu5A4Mx2txEREe1rpcTwEuAkYLRdYTFwoO1r2t6otD3V7aqrAr+h\nul11ZeB0YFNyu2rMQHW/6qyzuv92XbsrSdI6ALYfbDO2aUtiiEFW95NLndX9t+vYk8+SDrB9sqT3\n0/AcgyRRtQ9/anqhRkTEIJrsrqQ1yv9r0/yAm8gb3CIiaivdbkd0SN2rI+qs7r9dJ6uSPj/JcrZ9\nyJQii4iIGWGyqqQrqKqMxssyNc6tERErtlQlRXRI3asj6qzuv10nq5LOmmQ52957SpFFRMSMMFlV\n0id7FkVERAyMVCVFdEjdqyPqrO6/XSerkr5h+42Srhtnsm2/uK0IIyJioE1YYpC0oe07Jc0db7rt\nBd0La3wpMcQgq/tVZ53V/bfrdl9JS0sYthdNPbzpSWKIQVb3k0ud1f2361hVUsMKDwb+HXgcWFJG\nm+r9CRERUTOtdLt9C7Cz7Xt7E9KksaTEEAOr7leddVb3367jJQbgVuDR9kOK6I9Zs2Dx4t5tb2io\nd9uK6KZWSgw7Al8BLgWeKKP70ldSSgwxFXW/CozOqfux0o0Sw5eAHwLXUbUxpNvtiIgaayUxrGz7\nsK5HEhERA2GlFuY5R9LBkjaQNGv0X9cji4iIvmiljWEBz6w6su2e366aNoaYirrXG0fn1P1Y6doD\nboMgiSGmou5/7NE5dT9WppoYJqxKkjTcwsZ2bXVDERExM0zW+LyXpKOp7kj6BfAHqkQyB3gp8Drg\nwvIvIiJqYtKqJElrA28AXglsWkb/DvgJ8B3bD3c9wuZ4UpUULat79UB0Tj8ehlzUw97m0sYQUSQx\nxKDq9bHZsTaGhhXOkXScpB+U4W0kvWM6QUZExOBq5TmGrwDnARuW4V8Dh3YroIiI6K9WEsP6tk8D\nngaw/STwVFejioiIvmklMTws6TmjA5J2Bh6Y7oYlrSzpKklnleFZks6XdLOk8yStN91tRETE1LWS\nGN4PnAVsIekS4GSgEz2rvhe4gWVPVR8BnG97K+CCMhwRET3W0l1Jkp4FvKAM3lSqk9rfqLQxVdvF\nR4HDbL9e0o3Aq20vlDQHGLG99ZjlcldStCx3JcWgGvS7klp5teff0txX0laSHgCus313GzECfBr4\nILBOw7jZtheWzwuB2W2uOyIipqGVbrffDrycZU84DwNXAptL+ojtk6ayQUl7AXfbvmqibjdsW9K4\n+XT+/PlLPw8PDzM8PO4qIiJWWCMjI4yMjLS9fCu9q54HHDB6NS9pNlU7w/7ARba3ndIGpY8BB1Dd\n2bQaVanhW8DLgGHbd0naALgwVUkxHalKikE16FVJrTQ+b9JQxQNwdxl3H8te9dky2/9qexPbmwNv\nAn5k+wDgu8CBZbYDgTOnuu6IiJi+VqqSLpT0feB0qtd6/i0wImlN4P4OxDCaN48CTi9PVS8A9u3A\nuiMiYopaqUoaTQa7lFE/Bb7ZjzqdVCXFVKQqKQbVoFclLa931VWAX46t6++XJIaYiiSGGFSDnhgm\nbWOw/RRwk6TNph1ZRETMCK20McwCrpd0GfDHMs629+5eWBER0S+tJIb/2/UoIiJiYORFPVFbaWOI\nQTWj2xjKCl8u6XJJD0t6UtISSQ9OL8yIiBhUrTzgdgzw91Qv6FkNeAdwbDeDioiI/mklMWD718DK\ntp+2fQKwe3fDioiIfmml8fmPkp4NXCPpaOAuqiegIyKihlopMby1zPdu4BFgY6onoSMiooZyV1LU\nVu5KikE16HcltfKinlcCRwJzG+a37S3aijAiIgZaK53o3QS8j+rlPE+Pjrd9b3dDGzeWlBiiZSkx\nxKCa8SUG4H7b50wjpoiImEEmLDFI+tPy8Y3AylRvWXt8dLrtK7se3TNjcvPrp7traAgWLerZ5qLD\nUmKIQTVrFixe3MstdqjbbUkjTHIWtr3rlGObpl5XJeXEMrPl94uodPR9DIMmiSGmIr9fRKUbfSV9\nTNJ6DcNDkv6z3QAjImKwtfKA21/ZXvpuZ9uLgT27F1JERPRTK4lhJUmrjQ5IWh1YtXshRUREP7Vy\nu+rXgAskHU/VR9JBwEldjSoiIvqmpcZnSXsAry2D59s+t6tRTRxHGp+jZfn9IiodvytJ0prAY7af\nlvQC4AXAObafnF6oU5fEEFOR3y+i0vG7koCLgWdL2gg4FzgA+Ep74c0sQ0PVyaVX/2bN6vceR0S0\n1sYg249IegdwrO2jJV3T7cAGQa+felbechERA6ClN7hJejnwZuD7U1kuIiJmnlZO8O8D5gHftn29\npC2BC7sbVkRE9Eu6xBggaSztrHyfEZWOdbst6bO23yvprHEm2/bebQa4CdVzEM+j6qTvS7Y/J2kW\ncBqwGbAA2LfxieuIiOiNSbvdtn2FpOFxJtv2j9vaoDQHmGP7aklrAVcA+1A9OHdvadw+HBiyfcSY\nZVNiiJbl+4yodKV3VUnPBbB9zzRim2jdZwLHlH+vtr2wJI8R21uPmTeJIVqW7zOi0rHnGFSZL+le\n4GbgZkn3SjqyE4GWbcwFdgB+Dsy2vbBMWgjM7tR2IiKidZPdlXQosAvwMttDtoeAnYBdJB023Q2X\naqRvAu+1/VDjtFIsyLVeREQfTPaA21uB3Rqrj2zfKunNwPnAp9rdqKRnUSWFk22fWUYvlDTH9l2S\nNgDuHm/Z+fPnL/08PDzM8PBwu2EMnNEnrXu5vby6NKJ+RkZGGBkZaXv5yRqff2n7RVOdttwNSgJO\nBO6zfWjD+KPLuI9LOgJYb0VrfO61utfB133/IlrVsdtVgck6yZtOB3q7AG8BrpV0VRk3DzgKOL10\nvbEA2Hca24iIiDZNVmJ4GnhkguVWt91KP0sdlRJDZ9X9irru+xfRqo6VGGyv3JmQIiJiJklneBER\n0SSJISIimiQxREREkySGiIhoksQQERFNkhgiIqJJEkNERDRJYoiIiCZJDBER0SSJISIimiQxRERE\nkySGiIhoksQQERFNet51dqy4Zs2CxYt7t72hod5tK6JOJnwfwyDK+xg6q9fvK8j7ESL6Y6rvY0hV\nUkRENEliiIiIJkkMERHRJIkhIiKaJDFERESTJIaIiGiSxBAREU2SGCIiokkSQ0RENEliiIiIJkkM\nERHRJIkhIiKaDFRikLS7pBsl/VrS4f2OJyJiRTQwiUHSysAxwO7ANsD+kl7Y36h6a2RkpN8hdNlI\nvwPoqrr/fnXevzrvWzsGJjEAOwG32F5g+0ng68Ab+hxTT9X/4BzpdwBdVfffr877V+d9a8cgJYaN\ngNsahm8v4yIioocGKTHkFS4REQNgYN7gJmlnYL7t3cvwPGCJ7Y83zDMYwUZEzDBTeYPbICWGVYCb\ngNcCdwKXAfvb/lVfA4uIWMGs0u8ARtl+StK7gXOBlYHjkhQiInpvYEoMERExGAap8XlSdX74TdIm\nki6UdL2kX0o6pN8xdZqklSVdJemsfsfSaZLWk3SGpF9JuqG0l9WGpHnl2LxO0imSnt3vmKZD0vGS\nFkq6rmHcLEnnS7pZ0nmS1utnjNMxwf59ohyf10j6lqR1J1vHjEgMK8DDb08Ch9reFtgZ+Jea7R/A\ne4EbqOfdZ58Fzrb9QuDFQG2qQCXNBf4R2NH2dlTVvG/qZ0wdcALVuaTREcD5trcCLijDM9V4+3ce\nsK3t7YGbgXmTrWBGJAZq/vCb7btsX10+P0x1Ytmwv1F1jqSNgb8Cvgy0fGfETFCuvF5l+3io2sps\nP9DnsDrpQaoLlzXKDSJrAHf0N6TpsX0xsHjM6L2BE8vnE4F9ehpUB423f7bPt72kDP4c2HiydcyU\nxLDCPPxWrtB2oPrx6uLTwAeBJcubcQbaHLhH0gmSrpT0P5LW6HdQnWJ7EfBJ4PdUdwveb/uH/Y2q\nK2bbXlhm7imFAAADnElEQVQ+LwRm9zOYLns7cPZkM8yUxFDH6odnkLQWcAbw3lJymPEk7QXcbfsq\nalZaKFYBdgSOtb0j8EdmdjVEE0lbAu8D5lKVYteS9Oa+BtVlru7IqeU5R9KHgSdsnzLZfDMlMdwB\nbNIwvAlVqaE2JD0L+CbwVdtn9jueDnoFsLek3wKnAq+RdFKfY+qk24HbbV9ehs+gShR18VLgEtv3\n2X4K+BbVb1o3CyXNAZC0AXB3n+PpOElvo6rSXW5inymJ4RfAn0iaK2lVYD/gu32OqWMkCTgOuMH2\nZ/odTyfZ/lfbm9jenKrR8ke239rvuDrF9l3AbZK2KqNeB1zfx5A67UZgZ0mrl+P0dVQ3EdTNd4ED\ny+cDgTpdnCFpd6rq3DfYfmx588+IxFCuVEYffrsBOK1mD7/tArwF2LXc0nlV+SHrqI5F9PcAX5N0\nDdVdSR/rczwdY/sa4CSqi7Nry+gv9S+i6ZN0KnAJ8AJJt0k6CDgK2E3SzcBryvCMNM7+vR34PLAW\ncH45vxw76TrygFtERDSaESWGiIjonSSGiIhoksQQERFNkhgiIqJJEkNERDRJYoiIiCZJDLHCk7RE\n0skNw6tIuqfdLsIlrSvpnQ3Dw3XsbjzqK4khourfaFtJq5Xh3ai6umj3IZ8h4F2dCCyiH5IYIipn\nA3uWz/tT9eskWPoSlzPLS04ulbRdGT+/vBTlQkm/kfSesvxRwJblCdOjqRLMWpK+UV6W8tXRjUo6\nqrwE5xpJn+jVzkZMZmDe+RzRZ6cB/ybpe8B2VH1XvapM+3fgCtv7SNqVqouIHcq0rYBdgXWAm0pX\nA4dTvRRlB6iqksr82wB/AH4qaReqfoj2sb11mW+dru9lRAtSYogAbF9H1bX0/sD3x0zeBTi5zHch\n8BxJa1OVBL5v+0nb91H1yDmb8bsXv8z2naVL56uBzYD7gcckHSfpr4FHO79nEVOXxBCxzHeB/6Kh\nGqnBRO+SeKLh89NMXAp/fMx8z7L9NNXbCc8A9gJ+MNWAI7ohiSFimeOB+bbHdpt9MaUP+1ItdI/t\nh5g4WTwErL28jUlaE1jP9jnAYcD2bcYd0VFpY4godx/ZvgM4pmHc6F1J84HjS7faf2RZv/3jvunL\n9n2SfirpOqpG7bPHmc9UyeM75W4oAYd2aocipiPdbkdERJNUJUVERJMkhoiIaJLEEBERTZIYIiKi\nSRJDREQ0SWKIiIgmSQwREdEkiSEiIpr8L6I2DxQIB5NYAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x7f04b38d7a10>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEZCAYAAACJjGL9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8XPP9x/HXW6yxx5oggtoiCbHEFnVt/dGWtlpUa/8V\nrSpaXWh/JbSlqLX2WqqUn6Taov1ZQl20QUQiaBqERqyx7xTJ5/fH93vdybh37mTuneXeeT8fj/u4\nc87Mme9nzsycz3zO95zvUURgZmbWmQXqHYCZmTU2JwozMyvJicLMzEpyojAzs5KcKMzMrCQnCjMz\nK8mJwjol6f8k7VvvOHpSd1+TpDGSruzJmLpD0n9J+lOFy24jaXrB9ExJ2+fbH79OSYMlvSVJPRO1\nFevqcyXpPklDaxlTISeKBiLpt5J+Vqe2P/FBjYjPRkTDbBS7ImmupLfzRu1lSbdJ2rPwMT3wmhrt\nxKNfACdXsmBE3B0R6xXO6uh2RMyKiCWjQU66knR5OfMlfVXSdElv5M/DHyUNKnrMIElPVzPeDuJs\n6aDNrtbtr4ATqxRSl5wo5pOkBesdg5U0IiKWBNYBfgucK+m4Hnz+HvtVLalfN5ffDFgqIib2UEjz\nPH0VnrNbJF0gaXC+vZykiyQtJulCSQPy/MGSLsiL/AP4dEQsDawOvAucUfS0nwVuqtFLKKWr9X0j\nsJ2klWoRzCdERFP8ATOBY4B/Aq8ClwGLFNz/eeBB4DXSB2x40bI/BB4C3iMl2NHAhPz4WcD++bGL\nkLL/U8ALwAXAovm+FuAZ4HvAbOA54IB83yHAB8B/gLeA6/P8Y4AZwJs59i8WxLUAcDrwEvAkcDgw\nF1gg3780cGlu5xngZ233Fa2bnXO7H+S2p+T5rcB/59sH5PVyRn7NM4CtgAPz658N7FfwnJ2uh6K2\nFwFeBzYomLcC6Uu9fP77S27zFeAuQJ28x3OBNYvmfTm/Z8t28Jo+BdyZ238J+N+C5TYAxuc2XwCO\nzfOPB64FrsjvySPAJgXLlXq/Ctfhy6RfiANIG4E3gInAz4G7C5ZZryCO6cAeBfcdB1zcwTr4FvB4\njuFEYC3gnvw6/xdYqODz+HTBsv8Gts+3xwBX5ttDmPdzNQi4Icf0OPCNgucYA4ztbP108p6VG+9g\nUvKfkecPLXivrs3zLwdW66CdJXJMZxbN/2Pbe0T6nn+f9D1/i/TdWYmUSN7I78MyBcvult/j14A7\ngPWKthlHA1MLXsciwOKkz+Oc3MabwEC6+Fzl57yVgu9YTbef9Wi0Li80vXEPAasAywJ/B36W7xtJ\n2tBtRsrs++UvzUIFy07Oyy5C+nXyJrAX0I/0Zd8wP/ZM4M/AMvnDeQNwUsEX88P8ZeoH7AK8Ayyd\n778cOLEo7q8AK+fbewJvAyvl6W/mD+qg3N5t+QPY9oX+E2kDvRhp43sfcEgn6+d44HdF8+4ADsq3\nD8ix75/X0c9IyefXwELATnmd9O9qPXTQ9qXAzwumvw38X759cn4N/fLf1iXe444SxUI57v/q4DVd\nQ3sCWBjYKt9eEnge+G6evwQwKt83hvRF3zmvh5OAe8p8v9rW4bdJSX5R0gbk6nx7fVLSvSs/fnHg\n6bzOFwA2IiW09fL9Y4GjO1gHf8oxDyX9APgbaWO/VP687FfweawkUdwFnJvXzYbAi8B25ayfTt6z\ncuNdnfQD74n83m2Q5w/L6/EJ0mdpcMHzjyZtqOfm937hos/GS8DiBa9/Aum7Moi0TZicX+MiwO3A\ncfmx6+T3dgfS5/IHpGS3YMFz3QusTNreTAMOzfdtW7jey11vwNnA6XXZftaj0bq80PTGHVIwvQsw\nI9++gE9uoKcD2xQse0DBfccC13XQhvKHZ82CeVsCT+bbLaRfygsU3D+b9o3Q5eTkVeJ1TAF2zbf/\nBhxccN8O+QuxAOmX0PsU/IoH9gb+1snzjiFvGArmFSeKxwruG57bWqFg3svAiK7WQwdt79D2XuTp\nfwD75NsnkBLOWmW8x59IFHn+88DeHbymK4CLgFWKHr838ECJ9XRrwfRQ4N0u3q/dCtbhUwX39SNV\ncWsXzPsZuaIg/RC5q+j5LqJ9Y3UrRYk/r4MtC6YnAT8omP4V+Vc1FSQKYDXgI/LGNd9/EnB5hetn\nfuK9gFRVXA4sl9fFYvn/gDx/MHBBB+0Myuvr7KLP3W1Fr3/vguk/AOcVTB8O/Cnf/inzVqAi/XD6\ndMFzfa3g/lPa4ipe7+WuN1K1eWlX34Nq/DVbH0VhB9Is0ocH0i+VoyW91vYHrFpwf/Gyq5J29RRb\nAegPPFDwPDeRdp+0eSUi5hZMv0v6NdUhSftJmlLwfMMKnm9gUVzPFNxenfSL6fmCZS/MMVZqdsHt\n9wAi4qWieUtQ3noo1Ar0lzRK0hDSL7i2I3lOI+1SuFXSE5J+ND8BS1oox/NqB3f/kPQFnyjpEUkH\n5vmr0fH726ZwPbwLLCppgdxeR+/XcgWPL3y/VgAWpPR7uHnR5/JrpB8BkHZ5LNVFfO8VTb9Pic9b\nGQYBr0bEOwXzZpGq7Y7an2f9dKJUvG2fKSLiWxExK99+JSIOjYj38v9X8/xZEfGt4gYi4jnSxn2/\ngtmfBf46H7EUrrtBpNfd9vxBeh8L18MLHb2OErpab0uR3vOaa7aO2cFFt5/Nt2cBv4iIk0osGwW3\nnwZGdfCYl0kfiKER8XwF8RW2gaTVgYuB7UllaEiaQnvH1/OkjVqbwttPk8r45YoSU2fKeUy55ms9\nRMQcSWNJv+RfBG5s2xBFxNuk/cbfl7QB8DdJ90fE38qM5QukX8Cf6PCNiNmkviEkbQ3cJuku0udh\nr87C7ayhMt6v4uVfyrGtRtptAfO+h7OAOyPiM500+RBpF8j86DT+Mj0HDJC0RH5vIH2XnimxTI+K\niAPnZ36BhUgb4Da7AF/qYpnOOpmfJVXV6UHp0OHVaN+mlNLRe1DO+7I+8LsyHtfjmqmiEHCYpFXy\nERI/IXUeAfwG+Gb+RStJi0v6nKTOfgH8HthR0h6SFsxHYGyYN8i/Ac6StAJAbq+zL3qx2cCaBdOL\nkz5ALwML5F+8wwruHwscmQ/xWwb4UX48eQN9K3CGpCUlLSBpLUmfLtH2kJ44Vr7C9XA18FXSL+ar\n22bm9+FTOa43SX0wc0o8j/JyAyR9nbQv/ZcR8YlfYvn9WzVPvk5ad3NInecDJR0paZG8/kYVPn8n\nunq/5hERc0idqWPy0TvrAfvSvtH4K7COpH0kLZT/NsuPA/g/0v7urqiT2/MtIp4m7cc/Oa+bEcBB\nwFXded4iPRKvpK9JWi3fXp10KPF1eXoN0sEsj1b49OOAz0naPletR5MqjgllLDsbWE5SYTVY8nVK\nWhTYmNShXnPNlCiCtAG6ldTp9Thpnx8R8QBwMGmj8mq+bz86yfL5y/JZ0ofjFdJ+6BH57h+RdpXc\nK6ntSInCX32lfjlcCgzNuxn+GBHTSEc13UMqY4eROuHb/Ca/noeAB0gbljkFFcR+pA7Hafl1jSN1\nrnVkXP7/iqRJHb3sDmIv9Vq6Wg/zPlE6xPNt0u60wsMV187LvkX6Ep4XEXeWaHeqpLdI7+FBwFER\nMaaTx26a43sLuB44IiJm5l/KOwG7kqq2x0j7laHEeijj/epo2cNJR6e9QOozuYbUb0FEvAV8hpRA\nn82xnEx6T4mIKcAbBUns41g6iq+TGDp7D0s9bm9Sv8VzpER3XEGFN7+fk/mNd34MBSZIepu0e/Me\n0u5GgM/xyd1OXcX3cSw5wexDOpjjpfx8u0bERyWep23Z6aT3+UlJr0oaSNfrbVfgjoh4gTpQ7iTp\n+SeWLiOtvBcjYniedxrpMNQPSBvrAyPijXzfsaQv9hzSF/bWHo7n36TDIsvdZdHrSNqF1GE2pN6x\nWGUknQKsWMZulLbH7wQcFhFd7UKxApL+Cvw6Im6udyzlkHQv6SCMafVov5oVxeWkQ70K3Uo6pG1D\n0q+0YwGUTk3fi/QLYGfg/C46v4xUjkr6bN79tQrpENc/1jsuK5+kdSWNyLs8R5F+LJU9JEdEjHeS\nqEhr/usVImKLeiUJqGKiiIi7Keqhzx/qtt0i95GOHoLU4XhNRHwYETNJuyw66iy2eYl0WN2rpOO9\n/0k6Cct6jyVJ+83fJp0L8KuIuKG+IfV9EXFaRLxf7zh6i3oe9XQQaT8dpEPN7i247xnmPcys2yJi\njZ58vkYQEe/hhNqrRcQkUj+MWcOqy+4dST8BPoiIq0s8rDqdJ2ZmNl9qXlFIOoB0xNAOBbOfZd7j\nx1elg+ORJTl5mJlVICIqPtS4phWFpJ1JY6J8oWj/4A3AVyUtnI9vXpsOTpCC5hlypKu/448/vu4x\nNMqf14XXhddF6b/uqlpFIeka0slAyyuNvX486SinhYHx+byueyLisIiYls/MnUY6U/Ww6IlXZ2Zm\n3Va1RBERe3cw+7ISjz+JNLiYmZk1EJ+r0Eu1tLTUO4SG4XXRzuuinddFz6namdnVIMl7pMzM5pMk\nord0ZpuZWe/jRGFmZiU5UZiZWUlOFGZmVpIThZmZleREYWZmJTlRmJlZSU4UZmZWkhOFmZmV5ERh\nZmYlOVGYmVlJThSdeOcdmDCh3lGYmdWfE0UnZsyAPfaAI49MScPMrFk5UXRiww3h4YfhtddgxAho\nba13RGZm9eFhxsvwl7/AN78JX/gCnHIKLLFEzUMwM6uYhxmvgc9/Hh55BN57D4YPh9tvr3dEZma1\n44piPt18MxxyCOyyC5x2Giy1VF3DMTPrkiuKGtt559R3EZGqi1tuqXdEZmbV5YqiG8aPh4MPhh12\ngNNPh2WWqXdEZmaf5IqijnbaKVUXiyySqou//rXeEZmZ9TxXFD3kjjvgG9+ArbeGs86CAQPqHZGZ\nWeKKokFstx089BAsu2yqLq6/vt4RmZn1DFcUVXD33XDQQbDZZnDOObD88vWOyMyamSuKBrTNNjB1\nKgwcmM7qvu66ekdkZlY5VxRVNmFCqi5GjIBzz4UVV6x3RGbWbFxRNLittoIpU2CNNVKyuPbadA6G\nmVlvUbVEIekySbMlPVwwb4Ck8ZIek3SrpGUK7jtW0uOSpkv6TLXiqofFFktjRF1/PZx4InzlKzB7\ndr2jMjMrTzUrisuBnYvmHQOMj4h1gNvzNJKGAnsBQ/My50vqc9XO5pvD5Mmw3nqpuvj9711dmFnj\nq2ofhaQhwI0RMTxPTwe2jYjZklYGWiNiPUnHAnMj4pT8uJuBMRFxb9Hz9bo+is488AAccACsuSZc\neGHq+DYzq4aq91FI2kDStySdIumXkr4paYMK21spItp2uswGVsq3BwHPFDzuGWCVCtvoFTbZJCWL\njTZK17644gpXF2bWmDpNFJL2lTQR+BWwMvAkMBMYCPxK0v2S9qm04VwalNo09vnN5sILwwknwK23\nwplnpuHMn3223lGZmc1rwRL3LQvsEBFvdXSnpKWAA+azvdmSVo6IFyQNBF7M858FVit43Kp53ieM\nGTPm49stLS20tLTMZwiNZ6ON4P774eSTYeTINHz5fvuBKi4UzayZtba20tqDl+WsdR/FqcArEXGK\npGOAZSLimNyZfTUwirTL6TbgU8UdEn2pj6IzDz6Y+i5WXRUuvhgGDap3RGbW23W3j6LLRCFpReBg\nYAjtFUhExEFdLHcNsC2wPKk/4jjgemAsMJi0G2vPiHg9P/7HwEHAR8CREfGJKz00Q6IA+OADOOkk\nOP/8NHz5Pvu4ujCzytUiUdwD3AU8AMzNsyMiaj4wRbMkijZTpsD++8OQIXDRRT4yyswqU4tE8WBE\nbFRpAz2p2RIFpOri5z9Ph9CeeSZ87WuuLsxs/tQiUfwcuCci6n5ZnmZMFG3azrtYa62UNFZeud4R\nmVlvUbXzKCS9Lekt4EjgRknvS3or/71ZaYNWmU02gUmTYNiwdN7FNdf4vAszqw2PHtsL3X9/qi7W\nXRcuuABWWqnLRcysidXizOzby5lntbPZZmlX1LrrekRaM6u+TisKSYsB/YE7gJaCu5YCbo6I9aoe\n3SdjckVRZOLEdGTUBhukw2l9vQszK1bNiuJQYBKwLunQ2La/G4BzK23QetaoUekw2rXWStXFuHH1\njsjM+ppyjno6IiLOqVE8JbmiKO3ee1PfxYgRcN55sMIK9Y7IzBpB1Q+PzY1sxbxnZhMRv6u00Uo5\nUXTtvffguOPgqqvSpVe//OV6R2Rm9VaL8yiuAtYEHgTmtM2PiO9U2milnCjKN2ECHHhgGmTw3HNh\n+eXrHZGZ1UstEsW/gKGNsIV2opg/770H//M/6ZyL886DL32p3hGZWT3UIlGMIw3S91yljfQUJ4rK\n/P3vqbrYbDP49a9hueXqHZGZ1VLVz6MAVgCmSbpV0o3574ZKG7TaGz0apk5Nh84OHw7XX1/viMys\nNymnomjJN9seKNLosXdWMa7OYnFF0U13352qiy22gHPOgQED6h2RmVVbrY56WhnYjJQsJkbEi10s\nUhVOFD3jnXfgkENgscXgkkvqHY2ZVVsthvDYE7gP2APYE5goaY9KG7T6W3xx+Nzn4N136x2JmfUG\npa6Z3eZ/gM3aqghJKwC3Az4H2MysCZTTmS3gpYLpV/I8MzNrAuVUFDcDt0i6mpQg9gJuqmpUZmbW\nMMpJFD8Edge2ztMXRcSfqheSmZk1ki4TRT7M6DpJt+XHh6QBEfFq1aMzM7O66zJRSDoUOAH4DzA3\nzw7S+E9mZtbHlbPr6QfAsIh4udrBmJlZ4ynnqKcngfeqHYiZmTWmciqKY4B7JN0DfJDnRUQcUb2w\nzMysUZSTKC4GbgMeJvVRiPZxn8zMrI8rJ1H0i4jvVT0SMzNrSOX0Udwk6VBJAyUNaPuremRmZtYQ\nyqkovkba1XRMwTwfHmtm1iQ6TRSSBkXEcxExpKcblXQssA+pz+Nh4EBgceBaYHVgJrBnRLze022b\nmdn8KbXr6VJJ90n6paQWSeVUH12SNAQ4GNg4IoYD/YCvkiqW8RGxDml02mM6ew4zM6udThNFROwC\ntAB3ksZ6ulfSnyQdImlwN9p8E/gQ6J+TT3/gOWA34Ir8mCuAL3ajDTMz6yElq4SIeI80UuxNAJLW\nBHYBzpW0ckSMmt8GI+JVSacDs0gn8t0SEeMlrRQRs/PDZgMrze9zm5lZz5uv3UkR8SRwHnCepEUq\naVDSWsBRwBDgDWCcpH2K2glJHZ6rMWbMmI9vt7S00NLSUkkYZmZ9VmtrK62trT32fJ1eM1vShsDp\nwMvAscBlwMbAQ8CBETGjogalvYCdIuIbeXpfYAtge2C7iHhB0kDgjohYr2hZXzO7h1x9NfzlL+m/\nmfVt1bxm9oXA2cD1wATSGdrLAqcC51faIDAd2ELSYpIE7AhMA24E9s+P2R/4czfaMDOzHlIqUSwa\nETdGxDXAOxFxTUTMjYgbgRUqbTAipgK/AyaRqhNISeiXwE6SHiNVF7+stA0zM+s5pfoo+hXcPqPo\nvoW602hEnEqqTAq9SqouzMysgZSqKM6XtCRARHy8q0nSp0iDBJqZWRModR7FhaTzHZC0aMH8GRFx\nVA1iMzOzBtDVoIAXSlqM7nVem5lZL9ZpopC0LanD+S7ggTxtZmZNpquKYm5+jE9eMDNrUqUSxV3A\nKGAbYNOIuLM2IZmZWSMp1ZkdwDcj4l3gsNqFZGZmjcSd2WZmVpI7s83MrCR3ZpuZWUnuzDYzs5Lc\nmW1mZiV1dYW79/NV7b6Tr3W9YPtdsVuVYzMzswZQzhXu/gxcQrpexNw8z30WvVz//jB5MsyYAZ/6\nVL2jMbNGVk6ieD8izql6JFZTu+0GM2fCFlvAccfB4YfDAl0d2mBmTanTS6F+/IB0qdK1gFuA/7TN\nj4jJ1Q2tw1h8KdQe9thjcOCBsOCCcNllsNZa9Y7IzHpady+FWk5FsQGwL7Ad7bueyNPWy62zDtx1\nF5x9Nmy+OYwZA4cd5urCzNqVU1E8AawfER/UJqSSsbiiqKJHH4UDDoBFF4VLL4U116x3RGbWE7pb\nUZTzu/FhYNlKG7DeY9114e9/h899LlUX558Pc+d2vZyZ9W3lVBR3AiOA+2nvo6jL4bGuKGpn+vRU\nXfTvn/ouhgypd0RmVqnuVhTlJIqWDmZHPc7UdqKorY8+gjPOgNNOg5/9DA49FFTxR83M6qXqiaKR\nOFHUx7RpqbpYemm45BJYffV6R2Rm86MWfRTW5IYOhQkTYIcdYNNN4eKLwfnarHm4orD58sgjqboY\nMCBVF4MH1zsiM+uKKwqrqWHD4N57oaUFNtkkJQvnbrO+rZzO7NHA8cAQ5h0UsOZH2buiaCwPP5yq\nixVWSAlj1VXrHZGZdaQWFcWlwBnAaGCz/Deq0gat7xg+PFUXo0fDyJHpMFrncbO+p5yK4r6I2LxG\n8ZTkiqJxPfQQ7L8/DBwIv/kNrLJKvSMysza1qCjukHSapC0lbdz2V2mDAJKWkfQHSf+SNE3S5pIG\nSBov6TFJt0papjttWG2NGAETJ6bRaEeOhCuucHVh1leUU1G00sH1JyKi4kEBJV0B3BkRl0laEFgc\n+AnwckScKulHwLIRcUzRcq4oeoEHH0x9F6uumg6lHTSo3hGZNbded8KdpKWBKcWd4ZKmA9tGxGxJ\nKwOtEbFe0WOcKHqJDz6Ak05K40Wdfjrss4/P6jarl1oM4bEM6ainT+dZrcCJEfFGRQ1KGwEXAdOA\nDYEHgKOAZyJi2fwYAa+2TRcs60TRy0yenKqLIUPgootSH4aZ1VYtrkdxGWkE2T0Aka5NcTmwezfa\n3Bg4PCLul3QWMM8upogISR1mhDFjxnx8u6WlhZaWlgrDsFrYeGOYNCmNFbXhhvCrX8G++7q6MKum\n1tZWWltbe+z5yqkopkbEhl3NK7vBtFvpnohYI0+PBo4F1gS2i4gXJA0E7vCup75lypR0Nb1VVkl9\nFz4yyqw2anHU03uStilocDTwbqUNRsQLwNOS1smzdgT+CdwI7J/n7Q/8udI2rDGNHJmOjBo1yudd\nmPUm5VQUGwG/A5bOs14D9o+IqRU3Km0IXAIsDDwBHAj0A8YCg4GZwJ4R8XrRcq4o+oipU1N1seKK\nqbrwmFFm1VOzo54kLQUQEW9W2lh3OVH0LR9+CKeeCmedBb/4BRx8sPsuzKqhaolC0r4RcaWko5n3\nPAqR+pvPqLTRSjlR9E2PPJKqi7brXfhqemY9q5p9FP3z/yU7+TPrEcOGwT33wE47petdnHeer9Vt\n1kh8PQprKNOnp+pikUXg0kthrbXqHZFZ71fNXU+/LrFcRMQRlTZaKSeK5jBnDpx9djqz+6c/he98\nBxbwlVPMKlbNRHEAqW+ioyePiLii0kYr5UTRXB57DP77v9Ptyy6DtdeubzxmvVWvG+upO5woms/c\nuXDuuXDiiXDssXDUUdCvX72jMutdqllR3FhiuYiI3SpttFJOFM3riSdSdfGf/8Dll8N663W9jJkl\n1UwULaUWjIjWShutlBNFc5s7Fy68EI47Dn7wAzj6aFiwnNHKzJqcdz1Z0/n3v9PJeW++mfouhg2r\nd0Rmja1q51FIGpf/P9zB30OVNmjWXWusAePHwze+Adttl87q/vDDekdl1neV2vU0KCKekzSko/sj\nYmb1wuqYKworNmsWHHIIvPgi/Pa36ZKsZjavWo/19PEe4Yh4tdJGK+VEYR2JSB3cP/oRHH54Ojpq\n4YXrHZVZ46jFFe4OBU4A/gO0DawQxZcyrQUnCivl2Wfh0EPh6adTdTFyZL0jMmsMtUgUM4AtIuLl\nShvpKU4U1pUIuPJK+P73U9L46U9dXZjV4sJFTwLvVdqAWS1JsN9+6XoXU6emQQYnT653VGa9WzkV\nxcbAb4F7gA/ybI/1ZA0vAq66Kp1v8a1vwU9+4urCmlMtdj1NAu4CHib1UbRdj8JjPVmv8Nxz6cio\nZ55JfRcbbVTviMxqqxaJYkpENES3oBOFVSoCfve7dEb3t78NP/4xLLRQvaMyq41aJIqTgKeAG0hH\nPgE+PNZ6p2efTWd1v/CCz7uw5lGLRDGTeS+FCj481nqxwvMujjgCjjnG1YX1bR7ryaxCTz+dqouX\nXkrVxfDh9Y7IrDqqOdZTSxmNb1dpw2b1ttpqcNNN6Yio7bdPY0Z99FG9ozJrPKXGevoV8GngNmAS\n8DwpsawMbArsCNwRET+sTaiuKKx6Zs1Kgwy+9lqqLjbYoN4RmfWcqu56krQk8AVgNDA4z34K+Dtw\nfUS8XWnDlXCisGqKgN/8Jp1v8b3vpSOkfL0L6wvcR2HWw556Kl1N7803U3UxdGi9IzLrnqoP4SFp\nZUmXSro5Tw+V9N+VNmjW6FZfPV3v4qCD4NOfhlNOcd+FNbdyxnr6LXArMChPPw58t1oBmTUCCb75\nTbj/frjlFhg9GqZPr3dUZvVRTqJYPiKuBeYARMSHgH9fWVNYYw247bY00ODo0XDaaTBnTr2jMqut\nchLF25KWa5uQtAXwRncbltRP0hRJN+bpAZLGS3pM0q2SluluG2Y9YYEF4LDDYOJE+OtfYZtt4NFH\n6x2VWe2UkyiOBm4E1pQ0AbgS6ImRY48EptF+1vcxwPiIWAe4PU+bNYw114S//Q2+9jXYems4/XRX\nF9YcyjrqSdJCwLp58tG8+6nyRqVVSX0fvwC+FxG7SpoObBsRsyWtDLRGxHpFy/moJ2sITzwBBx6Y\nEsXll8M669Q7IrPO1eKopy8DuwLr5L9dJe0gacVKGwXOBH5A+6VVAVaKiNn59mxgpW48v1lVrbUW\ntLbCXnvBVlvBmWe6urC+q5zTiQ4CtgTuyNMtwGRgDUknRsTv5qdBSZ8HXoyIKZ0NExIRIanD0mHM\nmDEf325paaGlpcOnMKu6BRZIgwrusku63sWpp8Luu8Mee6R+jH796h2hNavW1lZaW1t77PnKGT32\nVmDftl/7klYi9VPsDdwVEfM12EEetnxf0pFTiwJLAX8ENgNaIuIFSQNJw4N415P1Go8/DuPGpb/n\nn4cvf9lJwxpDLYYZ/1dErF8wLWBaRKzf3YsaSdoW+H7uozgVeCUiTpF0DLBMRBxT9HgnCusVipNG\nW6Xx6U+H14K7AAAQxklEQVQ7aVjt1SJRnA+sDowlXQb1y8AzwPeBv0RExSPI5kRxdETsJmlAbmMw\nMBPYMyJeL3q8E4X1OjNmtCeNZ59trzScNKxWapEo2pLD1nnWP4Dr6rHFdqKw3m7GDPjDH2Ds2JQ0\nCisND0Bo1VLt0WMXBB4p7iuoFycK60vaksa4cfDMM04aVj21qCiuB46IiKcqbaSnOFFYX/XEE+2V\nxjPPwJe+BHvu6aRhPaMWieJuYCQwEXgnz46I2K3SRivlRGHNoC1pjBuXLtf6pS+lSmPbbZ00rDK1\nSBQtHc2PiNZKG62UE4U1myefbE8aTz3VXmk4adj88IWLzJpER0ljjz2gpcVJw0qrRUWxJXAOsD6w\nCNAPeDsilqq00Uo5UZgl//53e9KYORO++MVUaThpWEdqkSgeAL5KOsdhU2A/YN3ik+FqwYnC7JM6\nShp77AHbbeekYUlNEkVEbCLpoYgYkec9GBEbVdpopZwozEqbObM9aTz5ZHul4aTR3GqRKO4CdgIu\nAZ4HXgD2j4gNK220Uk4UZuXrKGm0VRoLLVTv6KyWapEohpCG/V6YdK3spYDzI2JGpY1WyonCrDJP\nPdWeNJ54Ar7whfZKw0mj7/NRT2Y2XwqTxowZ7ZXG9ts7afRVtagoRgPHA0Nov35FRMSalTZaKScK\ns541a1Z70nj8cSeNvqoWieJR4CjSxYo+voZXRLxcaaOVcqIwq55Zs+C669IwIo8/nnZP7bEH7LCD\nk0ZvV4tEcV9EbF5pAz3JicKsNp5+ur3SeOwxJ43ermqJQtIm+eYepJPs/gj8p+3+iJhcaaOVcqIw\nq73ipOHdU71PNRNFK9DpVrk7FyyqlBOFWX21JY2xY+ftCPfRU43NRz2ZWV20dYSPHZsOufXJfY2r\nFn0UJwGntl2WVNKypMuX/k+ljVbKicKsMbUdcjt2bBpSxGNPNZZaJIpPDNchaUpEjKy00Uo5UZg1\nvrYzwseOTbc9NHr91SJRPASMioj38/RiwKSI2KDSRivlRGHWu7QNWDh2bNpV5Sv31UctEsWPgN2A\nywABBwI3RMQplTZaKScKs96r7XoaY8emTvHdd29PGv361Tu6vq0mndmSdgF2yJPjI+KWShvsDicK\ns76h+BrhX/5yShrbbOOkUQ21qCgWB96PiDmS1gXWBW6KiA8rbbRSThRmfc+MGe1J47nn2pPG6NFO\nGj2lFoliMjAaWBb4B3A/8EFEfL3SRivlRGHWt82YkU7su/ZamD27PWlsvbWTRnfUIlFMiYiRkr4D\nLBYRp0qa6utRmFk1Pf54Shpjx6ak8ZWvtCeNBRaod3S9S3cTRVmrO183++vAX+dnOTOzSq29Nvz4\nx/Dgg9DaCiutBIcfDquuCkccAX//O8ydW+8om0M5FcW2wNHAPyLiFElrAUdGxBG1CLAoFlcUZk1u\n+vRUaYwbB6+80l5pbLmlK43OeAgPM2ta//pXe9J47bX2pLHFFk4ahao5KODZEXGkpBs7uDsiYreK\nGpRWA34HrEgadPDiiDhH0gDgWmB1YCawZ9uwIQXLOlGYWYemTWtPGm+80Z40Nt/cSaOqw4xHxAOS\nWjq4OyLizooalFYGVo6IByUtATwAfJF0It/LubP8R8CyEXFM0bJOFGbWpX/+s70j/O23500aqnhz\n2XvV6oS7FQAi4qVKGyrx3H8Gzs1/20bE7JxMWiNivaLHOlGYWdki5k0a777bnjRGjWqepFHNikKk\na2UfTrpwEaRLof46Ik6otMGiNoYAdwLDgFkRsWxB26+2TRc83onCzCoSAY880p403n+/PWlstlnf\nThrVPDz2u8DWwGYRsWzeaI8Ctpb0vUobbJN3O11HOoLqrcL7cjZwRjCzHiPB8OFw4ompE/yGG2Cx\nxWDffWHoULjrrnpH2LhKVRQPAjsV727Ku6HGFw89Pl+NSgsBfyENBXJWnjcdaImIFyQNBO7oaNfT\n8ccf//F0S0sLLS0tlYZhZkYEXH89fPvb6Uzwk0+GxRevd1Td09raSmtr68fTJ5xwQtV2PT0SEcPm\n974uG0y7la4AXomI7xbMPzXPO0XSMcAy7sw2s1p59VU46qh0It+ll6Yr9fUV1eyj6PTiRN25cJGk\n0cBdwEO07146FpgIjAUG48NjzaxO/vIX+Na3YNdd4ZRTYMkl6x1R91UzUcwB3u1kucUiouaXHXGi\nMLNaeP11OPpouP12uOQS2HHHekfUPT4z28ysSm6+GQ45BHbeGU47DZZeut4RVaYmgwKamTWjnXdO\nh9S2HTF18831jqg+XFGYmZXhttvgG9+A7beHM86AZZapd0Tlc0VhZlYDO+4IDz+czr0YNix1ejcL\nVxRmZvPpjjtSdbH11nDWWTBgQL0jKs0VhZlZjW23HTz0ECy7bOq7+POf6x1RdbmiMDPrhrvvhoMO\nSuNFnXMOLL98vSP6JFcUZmZ1tM02MHUqDByYqos//KHeEfU8VxRmZj1kwoRUXYwYAeeeCyuuWO+I\nElcUZmYNYqutYMoUWGONlCyuvTYNOtjbuaIwM6uC++5L1cW668L558PKK9cvFlcUZmYNaPPNYfJk\nWH992HBDuOqq3ltduKIwM6uyBx6AAw+E1VeHiy6CQYNq274rCjOzBrfJJjBpEmy8MWy0Efz2t72r\nunBFYWZWQw8+CAccAKusAhdfnP5XmysKM7NeZKONYOLEdILeyJFwxRWNX124ojAzq5MpU1J1MXhw\ndfsuXFGYmfVSI0fC/fen/xttBFde2ZjVhSsKM7MG8MADqbpYc81UXfTkeReuKMzM+oC2I6OGD0/n\nXfz+941TXbiiMDNrMJMmpepi7bXhwgthpZW693yuKMzM+phNN027otZfP40Zdc019a0uXFGYmTWw\niRNTdbH++nDBBZWNSOuKwsysDxs1Ko0ZtfbaqboYO7b2MbiiMDPrJe67L1UXw4alEWlXWKG85VxR\nmJk1ic03b7/exfDhMG5cbdp1RWFm1gvdc08akXbDDeG880pfq9sVhZlZE9pyy1RdrLZaqi6uu656\nbTVURSFpZ+AsoB9wSUScUnS/KwozsyL/+EeqLjbZJF2re7nl5r2/z1QUkvoB5wI7A0OBvSWtX9+o\nGldra2u9Q2gYXhftvC7aNdO62HrrNHz5wIGpuvjTn3r2+RsmUQCjgBkRMTMiPgT+F/hCnWNqWM30\nJeiK10U7r4t2zbYu+veHM85Ih8/+8Ifw9a/DK6/0zHM3UqJYBXi6YPqZPM/MzMo0ejRMnZoOnR0x\nAq6/vvvPuWD3n6LHuPPBzKwH9O8PZ50Fu+8OBx3U/edrmM5sSVsAYyJi5zx9LDC3sENbUmMEa2bW\ny3SnM7uREsWCwKPADsBzwERg74j4V10DMzNrcg2z6ykiPpJ0OHAL6fDYS50kzMzqr2EqCjMza0yN\ndNRTSZJ2ljRd0uOSflTveGpJ0mqS7pD0T0mPSDoizx8gabykxyTdKmmZesdaK5L6SZoi6cY83ZTr\nQtIykv4g6V+SpknavInXxbH5O/KwpKslLdIs60LSZZJmS3q4YF6nrz2vq8fzNvUzXT1/r0gUPhmP\nD4HvRsQGwBbAt/PrPwYYHxHrALfn6WZxJDCN9qPlmnVdnA38X0SsD4wAptOE60LSEOBgYOOIGE7a\nff1VmmddXE7aPhbq8LVLGgrsRdqW7gycL6lkLugViYImPxkvIl6IiAfz7beBf5HOMdkNuCI/7Arg\ni/WJsLYkrQp8FrgEaDuSo+nWhaSlgW0i4jJI/XwR8QZNuC6AN0k/qPrnA2P6kw6KaYp1ERF3A68V\nze7stX8BuCYiPoyImcAM0ja2U70lUfhkvCz/choJ3AesFBGz812zgW5eWbfXOBP4ATC3YF4zros1\ngJckXS5psqTfSFqcJlwXEfEqcDowi5QgXo+I8TThuijQ2WsfRNqGtulye9pbEoV73AFJSwDXAUdG\nxFuF9+XREvv8epL0eeDFiJhCezUxj2ZZF6SjFjcGzo+IjYF3KNq10izrQtJawFHAENKGcAlJ+xQ+\nplnWRUfKeO0l10tvSRTPAqsVTK/GvBmxz5O0EClJXBkRf86zZ0taOd8/EHixXvHV0FbAbpL+DVwD\nbC/pSppzXTwDPBMR9+fpP5ASxwtNuC42BSZExCsR8RHwR2BLmnNdtOnsO1G8PV01z+tUb0kUk4C1\nJQ2RtDCpI+aGOsdUM5IEXApMi4izCu66Adg/394f+HPxsn1NRPw4IlaLiDVInZV/i4h9ac518QLw\ntKR18qwdgX8CN9Jk64LUib+FpMXy92VH0sEOzbgu2nT2nbgB+KqkhSWtAaxNOsG5U73mPApJu9B+\nrYpLI+LkOodUM5JGA3cBD9FeIh5LenPHAoOBmcCeEfF6PWKsB0nbAkdHxG6SBtCE60LShqRO/YWB\nJ4ADSd+RZlwXPyRtEOcCk4FvAEvSBOtC0jXAtsDypP6I44Dr6eS1S/oxcBDwEWlX9i0ln7+3JAoz\nM6uP3rLryczM6sSJwszMSnKiMDOzkpwozMysJCcKMzMryYnCzMxKcqIwm0+SjpK0WJXbWF3S3gXT\nm0g6u5ptmnXG51FYU5DULyLm9NBz/RvYNCJe6Ynn66SNFtLJhLtWqw2zcrmisF4hD98yXdJV+QI9\n49p+1edf262SJkm6uWB8m1ZJZ0q6HzhC0maSJkh6UNJ9khbPF0A6TdJESVMlHZKXbcnLj8sXBboq\nzz+CNOjcHZJuz/MukHS/0kWlxhTE/Nm87CRJ56j9IkuL5wvN3JdHfd2tg5f8S2AbpYszHZXjaVt+\njKQrJN0laaak3SX9StJDkm7Kw2x3ul7M5ltE+M9/Df9HGhV0LrBlnr4UOJo0guoEYLk8fy/SEC8A\ndwDn5tttQ1xskqeXIA11cQjwkzxvEeD+3FYL8DopKSi3sVV+3L+BAQWxLZv/98ttDgcWJQ15vXq+\n72rghnz7JODr+fYywKNA/6LXuy1wY8F0S9s0MIY0pEs/0sWK3gX+K9/3R9L1BhbqbL34z3/z+7fg\n/KUVs7p6OiLuybevAo4AbgY2AG5LY8HRj3Q9gjbX5v/rAs9HxAPw8QWgyJeBHC7pK/lxSwGfIl0E\nZ2JEPJcf9yApgUzoIK69JB1MSloDSVcO6wc8GRFP5cdcQ0pKAJ8BdpX0/Ty9CGk0z0cLnrPDIdSz\nAG6KiDmSHgEWiPaxeh7Oca7TxXoxK5sThfUmhR1qytMC/hkRW3WyzDtlPO/hkS5y0/7kqY/gPwWz\n5tDB9yWPvnk0qc/iDUmXk6qJ4s6/4g3/7hHxeBmxdeYDgIiYK+nDgvlzc5xdrRezsrmPwnqTwZK2\nyLe/BtxN+hW+Qtt8SQspXRO4TdsG+lFgoKRN8+OWVLoW+y3AYQX79deR1L+LON4iVR7k/+8Ab0pa\nCdiFlCQeBdaUtHp+3F60J49bSNUQuc2RHbTxJmnk046UqjbadLVezMrmRGG9yaPAtyVNA5YGLoh0\nDfWvAKfk3UNTSBesaRMAEfEBaWP96/y4W0i7fC4hXbdgsqSHgQtIv8hLXRHsYuBmSbdHxNTc5nTg\n98Dfc3vvA4flx00ibfjfzMv/DFgodz4/ApzQQRsPAXNyx/tRRfEUx1YcZ5SxXszK5sNjrVdQulb4\njRExvM6hlE3S4hHxTr59HvBYRPhcCOt1XFFYb9LbftUcnA9v/SdpF9VF9Q7IrBKuKMzMrCRXFGZm\nVpIThZmZleREYWZmJTlRmJlZSU4UZmZWkhOFmZmV9P/0fFqOisr9dQAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x7f04cd2ebed0>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Power developed is 13.79 MW\n"
     ]
    }
   ],
   "source": [
    "%matplotlib inline\n",
    "from matplotlib.pyplot import plot, subplot, title,show,xlabel,ylabel\n",
    "#Input data\n",
    "q=[0,30,25,20,0,10,50,80,100,110,65,45,30]#Mean discharge in millions of cu.m per month respectively\n",
    "h=90#Head in m\n",
    "n=86#Overall efficiency in percent\n",
    "\n",
    "#Calculations\n",
    "Qm=(q[(1)]+q[(2)]+q[(3)]+q[(4)]+q[(5)]+q[(6)]+q[(7)]+q[(8)]+q[(9)]+q[(10)]+q[(11)]+q[(12)])/12#Mean discharge in millions m**3/s\n",
    "Q=[0,30,30,25,25,20,20,0,0,10,10,50,50,80,80,100,100,110,110,65,65,45,45,30,30,0]#Discharge(million m**3/month) on y-axis\n",
    "y=[0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12]#Months on x-ais\n",
    "D=[0,110,100,90,80,70,60,50,40,30,25,20,10,0]#Discharge per month in million m**3\n",
    "pt=[0,8.3,16.7,25,25,25,33.3,41.7,50,66.7,75,83.3,91.7,100]#Percentage time \n",
    "Po=((Qm*10**6*9.81*h*(n/100))/(30*24*3600*1000))#Power developed in MW\n",
    "\n",
    "#Output\n",
    "#subplot(131)\n",
    "plot(y[1:],Q[1:])#Graph Discharge(million m**3/month) vs Month\n",
    "title(\"Discharge(million m**3/month) vs Month\")\n",
    "xlabel(\"Months\")\n",
    "ylabel(\"Discharge(million m**3/month)\")\n",
    "show()\n",
    "#subplot(133)\n",
    "plot(pt[1:],D[1:])#Graph percentage time vs Discharge(million m**3/month)\n",
    "title(\"percentage time vs Discharge(million m**3/month)\")\n",
    "xlabel(\"percentage time\")\n",
    "ylabel(\"Discharge(million m**3/month)\")\n",
    "show()\n",
    "print \"Power developed is %3.2f MW\"%(Po)\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}