summaryrefslogtreecommitdiff
path: root/Power_Electronics_by_P_S_Bimbhra/Chapter13_4.ipynb
blob: 62d2a926364b19b74589b6acc04dedf5473d6429 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 13 : Power Factor Improvement"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13.1, Page No 754"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#initialisation of variables\n",
      "V_s=250.0\n",
      "R_l=5.0\n",
      "I_l=20.0\n",
      "V_l1=math.sqrt(V_s**2-(R_l*I_l)**2)\n",
      "reg2=(V_s-V_l1)/V_s*100    \n",
      "pf1=1.0\n",
      "\n",
      "#Calculations\n",
      "P_l1=V_l1*I_l*pf1     #load power\n",
      "P_r1=V_s*I_l*pf1     #max powwible system rating\n",
      "utf1=P_l1*100/P_r1  \n",
      "pf2=0.5\n",
      " #(.5*V_l)**2+(.866*V_l+R_l*I_l)**2=V_s**2\n",
      " #after solving\n",
      "V_l2=158.35    \n",
      "reg2=(V_s-V_l2)/V_s*100    \n",
      "P_l2=V_l2*I_l*pf2   #load power\n",
      "P_r2=V_s*I_l     #max powwible system rating\n",
      "utf2=P_l2*100/P_r2    \n",
      "\n",
      "\n",
      "#Results\n",
      "print(\"for pf=1\")\n",
      "print(\"load voltage=%.2f V\" %V_l1)\n",
      "print(\"voltage regulation=%.2f\" %reg1)\n",
      "print(\"system utilisation factor=%.3f\" %utf1)\n",
      "print(\"energy consumed(in units)=%.1f\" %(P_l1/1000))\n",
      "print(\"for pf=.5\")\n",
      "print(\"load voltage=%.2f V\" %V_l2)\n",
      "print(\"voltage regulation=%.2f\" %reg2)\n",
      "print(\"system utilisation factor=%.3f\" %utf2)\n",
      "print(\"energy consumed(in units)=%.2f\" %(P_l2/1000))\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "ename": "NameError",
       "evalue": "name 'reg1' is not defined",
       "output_type": "pyerr",
       "traceback": [
        "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[1;31mNameError\u001b[0m                                 Traceback (most recent call last)",
        "\u001b[1;32m<ipython-input-2-ffdbe43fd921>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[0;32m     25\u001b[0m \u001b[1;32mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"for pf=1\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     26\u001b[0m \u001b[1;32mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"load voltage=%.2f V\"\u001b[0m \u001b[1;33m%\u001b[0m\u001b[0mV_l1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 27\u001b[1;33m \u001b[1;32mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"voltage regulation=%.2f\"\u001b[0m \u001b[1;33m%\u001b[0m\u001b[0mreg1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m     28\u001b[0m \u001b[1;32mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"system utilisation factor=%.3f\"\u001b[0m \u001b[1;33m%\u001b[0m\u001b[0mutf1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     29\u001b[0m \u001b[1;32mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"energy consumed(in units)=%.1f\"\u001b[0m \u001b[1;33m%\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mP_l1\u001b[0m\u001b[1;33m/\u001b[0m\u001b[1;36m1000\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
        "\u001b[1;31mNameError\u001b[0m: name 'reg1' is not defined"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "for pf=1\n",
        "load voltage=229.13 V\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13.2, Page No 756"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#initialisation of variables\n",
      "f=50.0\n",
      "V_s=230.0\n",
      "I_m1=2\n",
      "pf1=.3\n",
      "\n",
      "#Calculations\n",
      "I_c1=I_m1*math.sin(math.radians(math.degrees(math.acos(pf1))))\n",
      "C1=I_c1/(2*math.pi*f*V_s)    \n",
      "I_m2=5\n",
      "pf2=.5\n",
      "I_c2=I_m2*math.sin(math.radians(math.degrees(math.acos(pf2))))\n",
      "C2=I_c2/(2*math.pi*f*V_s)    \n",
      "I_m3=10\n",
      "pf3=.7\n",
      "I_c3=I_m3*math.sin(math.radians(math.degrees(math.acos(pf3))))\n",
      "C3=I_c3/(2*math.pi*f*V_s)    \n",
      "\n",
      "#Results\n",
      "print(\"at no load\")\n",
      "print(\"value of capacitance=%.3f uF\" %(C1*10**6))\n",
      "print(\"at half full load\")\n",
      "print(\"value of capacitance=%.3f uF\" %(C2*10**6))\n",
      "print(\"at full load\")\n",
      "print(\"value of capacitance=%.3f uF\" %(C3*10**6))"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "at no load\n",
        "value of capacitance=26.404 uF\n",
        "at half full load\n",
        "value of capacitance=59.927 uF\n",
        "at full load\n",
        "value of capacitance=98.834 uF\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13.3 Page No 764"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#initialisation of variables\n",
      "I_c=10.0\n",
      "f=50.0\n",
      "V_s=230.0\n",
      "\n",
      "#Calculations\n",
      "C=I_c/(2*math.pi*f*V_s)    \n",
      "I_l=10\n",
      "L=V_s/(2*math.pi*f*I_l)   \n",
      "\n",
      "#Results\n",
      "print(\"value of capacitance=%.3f uF\" %(C*10**6))\n",
      "print(\"value of inductor=%.3f mH\" %(L*1000))\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "value of capacitance=138.396 uF\n",
        "value of inductor=73.211 mH\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13.4, Page No 765"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#initialisation of variables\n",
      "V_s=230.0\n",
      "I_L=10.0\n",
      "X_L=V_s/I_L\n",
      "I_f1=6.0\n",
      " #B=2*a-math.sin(2*a)\n",
      "B=2*math.pi-I_f1*math.pi*X_L/V_s\n",
      "a=0\n",
      "i=1.0\n",
      "for a in range(1,360):\n",
      "    b=2*a*math.pi/180-math.sin(math.radians(2*a))   \n",
      "    if math.fabs(B-b)<=0.001  :      #by hit and trial\n",
      "        i=2\n",
      "        break\n",
      "print(\"firing angle of TCR = %.1f deg\" %a)\n",
      " #(a-.01)*180/math.pi)\n",
      " \n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "firing angle of TCR = 359.0 deg\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13.5 Page No 766"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#initialisation of variables\n",
      "L=.01\n",
      "\n",
      "\n",
      "#Calculations\n",
      "print(\"for firing angle=90deg\")\n",
      "a=90*math.pi/180\n",
      "L_eff=math.pi*L/(2*math.pi-2*a+math.sin(2*a))    \n",
      "print(\"effective inductance=%.0f mH\" %(L_eff*1000))\n",
      "print(\"for firing angle=120deg\")\n",
      "a=120*math.pi/180\n",
      "L_eff=math.pi*L/(2*math.pi-2*a+math.sin(2*a))    \n",
      "print(\"effective inductance=%.3f mH\" %(L_eff*1000))\n",
      "print(\"for firing angle=150deg\")\n",
      "a=150*math.pi/180\n",
      "L_eff=math.pi*L/(2*math.pi-2*a+math.sin(2*a))    \n",
      "print(\"effective inductance=%.2f mH\" %(L_eff*1000))\n",
      "print(\"for firing angle=170deg\")\n",
      "a=170*math.pi/180\n",
      "L_eff=math.pi*L/(2*math.pi-2*a+math.sin(2*a))    \n",
      "print(\"effective inductance=%.3f H\" %L_eff)\n",
      "print(\"for firing angle=175deg\")\n",
      "a=175*math.pi/180\n",
      "L_eff=math.pi*L/(2*math.pi-2*a+math.sin(2*a))  \n",
      "\n",
      "#Results\n",
      "print(\"effective inductance=%.2f H\" %L_eff)\n",
      "print(\"for firing angle=180deg\")\n",
      "a=180*math.pi/180\n",
      "L_eff=math.pi*L/(2*math.pi-2*a+math.sin(2*a))    \n",
      "print(\"effective inductance=%.3f H\" %L_eff)\n",
      " #random value at firing angle =180 is equivalent to infinity as in answer in book\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "for firing angle=90deg\n",
        "effective inductance=10 mH\n",
        "for firing angle=120deg\n",
        "effective inductance=25.575 mH\n",
        "for firing angle=150deg\n",
        "effective inductance=173.40 mH\n",
        "for firing angle=170deg\n",
        "effective inductance=4.459 H\n",
        "for firing angle=175deg\n",
        "effective inductance=35.51 H\n",
        "for firing angle=180deg\n",
        "effective inductance=-128265253940037.750 H\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13.6 Page No 766"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#initialisation of variables\n",
      "Q=100.0*10**3\n",
      "V_s=11.0*10**3\n",
      "\n",
      "#Calculations\n",
      "f=50.0\n",
      "L=V_s**2/(2*math.pi*f*Q)    \n",
      "\n",
      "#Results\n",
      "print(\"effective inductance=%.4f H\" %L)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "effective inductance=3.8515 H\n"
       ]
      }
     ],
     "prompt_number": 7
    }
   ],
   "metadata": {}
  }
 ]
}