summaryrefslogtreecommitdiff
path: root/Power_Electronics/Power_electronics_ch_7_3.ipynb
blob: 7288e1e0870ce3405c77105a1b74570333008e62 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 7 : Cycloconverters"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "example 7.1, Page No.319"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# input voltage, SCR ratings and input power factors\n",
      "\n",
      "import math\n",
      "#variable declaration\n",
      "V = 250                # single phase supply voltage \n",
      "I = 50                 # supply current\n",
      "pf = 0.8               # lagging power factor\n",
      "alfa = 0               # ideal SCR\n",
      "\n",
      "#calculations\n",
      "x = math.sqrt(2)\n",
      "x = math.floor(x*1000)/1000\n",
      "Vm = (V*math.pi*x)/(3*math.sin(math.pi/3))\n",
      "Vrms = Vm/math.sqrt(2)\n",
      "Irms = I*math.sqrt(2)/math.sqrt(3)\n",
      "y = math.sqrt(3)\n",
      "y = math.floor(y*1000)/1000\n",
      "piv = y*Vm\n",
      "piv = math.floor(piv*100)/100\n",
      "Ii = math.sqrt((I**2)/3)\n",
      "pipp = V*I*pf/3.0\n",
      "pf_i = pipp/(Vrms*Ii)\n",
      "\n",
      "#Result\n",
      "print(\"Vm = %f V\\nrms current rating of thyristor = %.1f A\\nPIV = %.2fV\\nRMS value of input current = %.1f A\"%(Vm,math.ceil(Irms),piv,Ii))\n",
      "print(\"Power input per phase = %.2f W\\nInput power factor = %.3f lagging.\"%(pipp,pf_i))"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Vm = 427.452050 V\n",
        "rms current rating of thyristor = 41.0 A\n",
        "PIV = 740.34V\n",
        "RMS value of input current = 28.9 A\n",
        "Power input per phase = 3333.33 W\n",
        "Input power factor = 0.382 lagging.\n"
       ]
      }
     ],
     "prompt_number": 32
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "example 7.2, Page No. 320"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#output voltage(referring ex 7.1)\n",
      "\n",
      "import math\n",
      "#variable declaration\n",
      "V = 250                # single phase supply voltage \n",
      "theta1 = 30            # firing angle 1\n",
      "theta2 = 45            # firing angle 2\n",
      "\n",
      "#calculations\n",
      "#(a)\n",
      "v1 = V*math.cos(theta1*math.pi/180)\n",
      "#(b)\n",
      "v2 = V*math.cos(theta2*math.pi/180)\n",
      "\n",
      "#Result\n",
      "print(\"(a) RMS value of output voltage = %.1f V\"%v1)\n",
      "print(\"(b) RMS value of output voltage = %.2f V\"%v2)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a) RMS value of output voltage = 216.5 V\n",
        "(b) RMS value of output voltage = 176.78 V\n"
       ]
      }
     ],
     "prompt_number": 35
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "example 7.3, Page No.320"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Output voltage for different firing angle\n",
      "\n",
      "import math\n",
      "#variable declaration\n",
      "Vrms = 230               # input voltage\n",
      "theta1 = 0               # firing angle 1\n",
      "theta2 = 30              # firing angle 2\n",
      "\n",
      "#calculation\n",
      "#(a)\n",
      "v1 = 6*math.sqrt(2)*Vrms*math.sin(math.pi/6)*math.cos(theta1*math.pi/180)/(math.pi*math.sqrt(2))\n",
      "#(b)\n",
      "v2 = 6*math.sqrt(2)*Vrms*math.sin(math.pi/6)*math.cos(theta2*math.pi/180)/(math.pi*math.sqrt(2))\n",
      "\n",
      "\n",
      "#Result\n",
      "print(\"(a) Vo = %.2f V\\n(b) Vo = %.1f V\"%(v1,v2))"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a) Vo = 219.63 V\n",
        "(b) Vo = 190.2 V\n"
       ]
      }
     ],
     "prompt_number": 37
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "example 7.4, Page No.320"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# supply voltage\n",
      "\n",
      "import math\n",
      "#variable declaration\n",
      "Vo = 200                   # output voltage\n",
      "\n",
      "#Calculation\n",
      "Vi = Vo*(math.pi/3)/math.sin(math.pi/3)\n",
      "\n",
      "#Result\n",
      "print(\"RMS value of input voltage = %.2f V \"%Vi)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "RMS value of input voltage = 241.84 V \n"
       ]
      }
     ],
     "prompt_number": 38
    }
   ],
   "metadata": {}
  }
 ]
}