1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 1: Power Diodes And Transistors"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"example 1.1, Page No. 8"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# stored charge and peak reverse current\n",
"\n",
"import math\n",
"#variable declaration\n",
"t = 2.5*10**-6 # reverese recovery time to diode\n",
"di_by_dt = 35*10**6 # di/dt in A/S\n",
"\n",
"#Calculations\n",
"Q= 0.5*(t**2)*di_by_dt\n",
"I= math.sqrt(2*Q*di_by_dt)\n",
"\n",
"#result\n",
"print(\"(a) Stored charge\\n Q = %.3f * 10^-6 C\\n\\n(b) Peak reverse current\\nI = %.1f A\"%(Q*10**6,I))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a) Stored charge\n",
" Q = 109.375 * 10^-6 C\n",
"\n",
"(b) Peak reverse current\n",
"I = 87.5 A\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"example 1.2, Page No.8"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Vrrm rating for diode in full wave rectifire\n",
"\n",
"import math\n",
"# variable declaration\n",
"V= 12 # secondary peak voltage\n",
"sf = 1.4 # safety factor\n",
"\n",
"#calculations\n",
"# For fullwave rectifier with transformer secondary voltage 12-0-12, each diode will experience Vrrm equal to 2 x sqrt(2)x 12\n",
"r = math.sqrt(2)\n",
"r = math.floor(r*1000)/1000 \n",
"V = 2*r*V # Actual value of Vrrm for each diode\n",
"Vrrm= V*sf\n",
"\n",
"# result\n",
"print(\"Vrrm rating for each diode with safety factor of %.1f is %.2fV\\n\\n\"%(sf,Vrrm))\n",
"#Answer in the book for Vrrm rating is wrong\n",
"\n",
"#%pylab inline\n",
"import matplotlib.pyplot as plt\n",
"from numpy import arange,sin,pi\n",
"%matplotlib inline\n",
"#fig -1\n",
"t = arange(0.0,4,0.01)\n",
"S = sin(math.pi*t)\n",
"plt.subplot(411)\n",
"plt.title(\"Secondary Voltage\")\n",
"plt.plot(t,S)\n",
"#fig -2\n",
"plt.subplot(412)\n",
"plt.title(\"Load Voltage\")\n",
"t1 = arange(0.0,1,0.01)\n",
"t2 = arange(1.0,2.0,0.01)\n",
"t3 = arange(2.0,3.0,0.01)\n",
"t4 = arange(3.0,4.0,0.01)\n",
"s1 = sin((pi*t1))\n",
"s2 = sin((pi*t1))\n",
"s3 = sin(pi*t1)\n",
"s4 = sin(pi*t1)\n",
"\n",
"plt.plot(t1,s1)\n",
"plt.plot(t2,s2)\n",
"plt.plot(t3,s3)\n",
"plt.plot(t4,s4)\n",
"#fig -3\n",
"plt.subplot(413)\n",
"plt.title(\"Voltage across D1\")\n",
"plt.axis([0,4,0,1])\n",
"plt.plot(t1,s1)\n",
"plt.plot(t3,s3)\n",
"#fig -4\n",
"plt.subplot(414)\n",
"plt.title(\"Voltage across D2\")\n",
"plt.axis([0,4,-1,0])\n",
"s2 = sin((pi*t1)-pi)\n",
"s4 = sin(pi*t1-pi)\n",
"plt.plot(t2,s2)\n",
"plt.plot(t4,s4)\n",
"#Result\n",
"plt.show()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Vrrm rating for each diode with safety factor of 1.4 is 47.51V\n",
"\n",
"\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEKCAYAAAD6q1UVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXdYU9cbx79BrMoeskVRQGUIqCiitWItDhT3rts6667V\narXgHlSrldbRqnVr1Z9iFdDWghP3FhFBkOUABJkCCe/vj6OpSICQdQPcz/PcR5N7cs43h+TNvee8\nQ0BEBB4eHh6eGoUG1wJ4eHh4eFQPb/x5eHh4aiC88efh4eGpgfDGn4eHh6cGwht/Hh4enhoIb/x5\neHh4aiC88eepEfzxxx/o2LEj1zIqxMbGBmfPnuVaBk8NgDf+PArh4sWLaN++PQwMDGBsbIxPP/0U\nN27c4FqWyjl48CAaN25c6nmhUAhTU1MEBweX+3qBQACBQAAA8Pf3x8iRI5Wik4eHN/48cpOVlYVe\nvXph5syZyMjIQHJyMvz8/FCnTh2upSkEkUgkddt+/fohMzMT586dK/F8aGgoatWqhe7duytaHg+P\nTPDGn0duoqOjIRAIMGTIEAgEAtStWxfe3t5o0aKFuM2OHTvg6OgIIyMjdO/eHQkJCeJzDx8+hLe3\nN4yNjWFubo5Vq1YBAAoKCjBr1ixYWVnBysoKs2fPRmFhIQAgPDwcDRo0wPr162FmZgZLS0v88ccf\n4j7T09PRu3dv6Ovrw8PDA7GxsSU0z5w5Ew0bNoS+vj7c3d1x8eJF8Tl/f38MHDgQI0eOhL6+Plav\nXg1tbW28fv1a3ObWrVswNTUt9cNQp04dDB48GLt37y7x/O7duzF8+HBoaGjgxIkTcHJygqGhITp3\n7oyoqKhScxoaGopVq1bh0KFD0NXVRcuWLQEAO3fuhKOjI/T09GBra4tt27aVeN3atWthaWmJBg0a\n4Pfff4eGhgaePn0qns+5c+eiUaNGMDc3x5QpU/D27dsy/qo81R7i4ZGTrKwsMjY2ptGjR1NISAi9\nfv26xPnjx4+TnZ0dRUVFkUgkouXLl1P79u3FrzU3N6f169dTQUEBZWdn09WrV4mIaPHixeTp6Ump\nqamUmppK7du3p8WLFxMRUVhYGGlqapKfnx8JhUIKDg4mLS0tyszMJCKiIUOG0JAhQygvL48ePHhA\nVlZW1LFjR7GmvXv30uvXr0kkEtG6devI3NycCgoKiIjIz8+PateuTUFBQURElJ+fTz4+PrR582bx\n62fNmkUzZsyQOB+XLl0iPT09ys/PJyKizMxMqlevHt29e5ceP35M2tra9M8//5BQKKS1a9eSnZ0d\nFRUVERGRjY0NnT17loiI/P39aeTIkSX6PnXqFD19+pSIiM6dO0daWlp069YtIiIKCQkhc3NzioyM\npLy8PPryyy9JIBBQbGysWHOfPn0oIyODsrOzydfXlxYsWCDlX5mnusEbfx6F8OjRIxozZgw1aNCA\nNDU1qXfv3vTy5UsiIurevTtt375d3FYkEpGWlhY9e/aM9u/fT61atZLYp62tLYWEhIgfnz59mmxs\nbIiIGf969eqRSCQSnzc1NaWrV6+SUCik2rVr0+PHj8XnFi5cSJ9++mmZ+g0NDenevXtExIx/p06d\nSpw/ePAgdejQgYiIhEIhmZub0/Xr18vsz97envbv309ERNu2bSM3NzciIlq6dCkNGTJE3K64uJis\nrKzo3LlzRFTS+Pv5+dGIESPKHIOIqG/fvrRx40YiIho7diwtXLhQfC4mJkZs/IuLi0lbW1v8Q0BE\ndPnyZWrcuHG5/fNUX/hlHx6F0Lx5c+zcuROJiYl48OABUlJSMGvWLADAs2fPMHPmTBgaGsLQ0BDG\nxsYAgOTkZCQlJaFJkyYS+0xJSUGjRo3Ejxs2bIiUlBTxY2NjY2ho/PcR1tLSQk5ODlJTUyEUCmFt\nbV3itR/y448/wtHREQYGBjA0NMSbN2+QlpYmPt+gQYMS7fv06YPIyEjEx8fj77//Fi8XlcWoUaPE\nSz979uzBqFGjAADPnz8voUUgEMDa2hrJycll9vUhISEhaNeuHYyNjWFoaIjg4GCkp6eL+/7wPX/4\nHlJTU5GXl4fWrVuL/w49evQo8Z55aha88edROM2aNcPo0aPx4MEDAMzwbtu2DRkZGeIjNzcXnp6e\nsLa2Fq9Jf4ylpSXi4+PFjxMSEmBpaVnh+CYmJtDU1Cyxr/Dh/y9cuICAgAAcPnwYmZmZyMjIgL6+\nPuiDBLfvPW7eU7duXQwaNAh79+7F3r17xca8LEaMGIGzZ88iIiICV69exZdffil+T8+ePRO3IyIk\nJibCysqqVB8faygoKMCAAQMwb948vHr1ChkZGfDx8RHrtrCwQGJiorj9h/+vX78+6tWrh8jISPHf\nIDMzE1lZWeW+D57qC2/8eeTm8ePHWL9+vfjqNTExEQcOHICnpycAYPLkyVi5ciUiIyMBAG/evMHh\nw4cBAL169cLz58+xceNGFBQUIDs7G9euXQMADBs2DMuXL0daWhrS0tKwdOlSqVwfa9Wqhf79+8Pf\n3x/5+fmIjIzErl27xMY0OzsbmpqaqF+/PgoLC7F06VKpjOCoUaOwc+dOnDhxokIdNjY2+PTTTzFs\n2DB07doVpqamAIDBgwfj1KlT+Pfff1FUVIR169ahbt26aN++fak+zM3NER8fLzbuhYWFKCwsRP36\n9aGhoYGQkBCcOXNG3H7w4MHYuXMnoqKikJeXh2XLlonPaWhoYMKECZg1axZSU1MBsDuvD1/PU7Pg\njT+P3Ojq6uLq1avw8PCAjo4OPD094eLignXr1gEA+vbti/nz52Po0KHQ19dHixYtcPr0aQCAjo4O\n/v77b/z111+wsLBA06ZNER4eDgBYtGgR3N3d4eLiAhcXF7i7u2PRokXicT++Mv6QwMBA5OTkwNzc\nHOPGjcO4cePE57p3747u3bujadOmsLGxQb169UotxUjqu0OHDtDQ0EDr1q1LLK+UxejRo5GYmFji\nLqFp06bYu3cvpk+fDhMTE5w6dQp//fUXNDU1S71+0KBBANjylru7O3R1dfHzzz9j8ODBMDIywoED\nB9CnT58S72vGjBno3LkzmjZtKv7xfe9yu2bNGtjZ2aFdu3bQ19eHt7c3oqOjK3wfPNUTAZF8xVzG\njRuHU6dOwdTUFPfv35fYZsaMGQgJCYGWlhb++OMPsdsaD09V44svvsDw4cNL/JioK48ePUKLFi1Q\nWFhYYm+EhwdQwJX/2LFjERoaWub54OBgxMTE4MmTJ9i2bRumTJki75A8PJxw/fp13Lp1C0OGDOFa\nSpkcO3YMBQUFyMjIwPz589G7d2/e8PNIRO5PRceOHWFoaFjm+RMnTmD06NEAAA8PD2RmZuLly5fy\nDsvDo1JGjx4Nb29vbNiwAdra2lzLKZNt27bBzMwMdnZ2qF27NjZv3sy1JB41pfRCo4JJTk4u5X6W\nlJQEMzMzZQ/Nw6Mwdu3axbUEqQgJCeFaAk8VQSX3gx9vK5S3UcfDw8PDo3yUfuVvZWVVwt84KSlJ\nok+znZ1dqfwrPDw8PDzlY2tri5iYmEq/TulX/r179xZHOl65cgUGBgYSl3xiY2NBLN2ESo7MTMKG\nDQQ3N4KFBWHmTEJoKCEnp/zX+fn5SXxeJCI8eEAICCB4ehKMjAjTphHu31fde5JGpzodVUEjFzqL\niwlnzhAGDiTo6RF8fQm//06Ij5ddZ2oq4c8/CcOGEQwMCF26sMcFBdV/Pqu7TlkvmuW+8h82bBjO\nnTuHtLQ0WFtbY8mSJSgqKgIATJo0CT4+PggODoadnR20tbWxc+dOeYeUi2fPgLVrgf37ge7dgXXr\ngE6dgFq15OtXQwNwcmLH3LlsnB072Bh2dsCCBUDXrgC/4sVTFoWFwB9/AD/9BGhqAl9/DWzdChgZ\nyd93/frAoEHsePsWOH4c+PVXYMYMYOZMYMoUQF9f/nF4qg5yG/8DBw5U2CYwMFDeYeQmORlYsQI4\ndAiYOBF4+BCQIlOAzDRqBCxZAixeDPz5J/tB+OQTYNUq9iPAw/MeoRDYvRtYtgywt2dG2ctLeRcK\ndesCQ4ey48EDYM0awNaW/RB88w2gxs5MPAqk2jsA5+ayq+4WLdiHOiqKGWBZDb+Xl1el2mtqAsOH\nA3fvAt9/z67mevRgXzplUlmdXFAVNALK1RkSwu4Wd+9mx5kzQOfOshl+WXQ6OwN79gDXrrHvRrNm\nwM6dQCXq11Qa/u+uHsgd4asoBAIBFCmFCPjf/4DZs4HPPmNLPcq80peWwkJgyxZg+XJgyBBg5UpA\nV5drVTyqJj6efTYfPAA2bmQXBOqwJHj1Krv6z8sDtm0DyklcyqMmyGo7q+WVf3Iy0LMn4OfHrmr2\n7lUPww+wpZ8ZM9hVVm4uu/KqoKwrTzVCJGL7TO7uQOvWwP37gI+Pehh+APDwAC5cAObMYd+huXPZ\nDwFP9UNu4x8aGormzZvD3t4ea9asKXU+PDwc+vr6aNmyJVq2bInly5fLO2SZEDFD37Il4OkJ3L7N\nNnPVESMjtiG8fTswbRowciTw5g3XqniUydOnbEknKIgtsyxaxNbf1Q2BABgxgt2VPH/Olkw/qHLJ\nU10gORAKhWRra0txcXFUWFhIrq6uFBkZWaJNWFgY+fr6VtiXnFIoPZ1owAAiR0eimzfl6krl5OQQ\nTZlCZGNDdOkS12p4FE1xMdFvvxEZGxP9+CORUMi1osoRFERkZkbk50f0rtokjxohq+2U68r/2rVr\nsLOzg42NDWrXro2hQ4ciKChI0g+MPMNIoYPdQjdoANy8CbRqpdThFI62NvPw2LAB6NcPWLpUuRtu\nPKojJ4fd1W3cCJw/z9bT5XUrVjW9ewO3bgGXLrE76Q9q0fBUYeQy/pLy9nxcjk4gEODy5ctwdXWF\nj4+PuKCHIiACAgOBXr3YOuqGDep5Gy0tffqwL1lYGFsHfledj6eKEhkJtG0L1K7NNlIdHblWJDuW\nlsDp00Dfvmxf4O+/uVbEIy9yGX9pcvS0atUKiYmJuHv3LqZPn46+ffvKM6SY7Gzmp7xjBxARAfTv\nr5BuOcfKin2xXFzYpuDt21wr4pGFffvYVfLcucx1UkuLa0Xyo6EBfPsti5UZPRpYvZpdgPFUTeQK\n8vo4b09iYmKpwte6H/gx9ujRA1OnTsXr169hJCFs0d/fX/x/Ly+vMv1s4+MBX1+gXTvg8uWqfbUv\nCU1NICCAGf+uXYH169nSAY/6IxIB333H3Iz/+QdwdeVakeLp1IkttQ4cCFy/zqKSeXdl1REeHi6u\ndicX8mw0FBUVUZMmTSguLo4KCgokbvi+ePGCiouLiYjo6tWr1KhRI4l9SSvl4kUic3OijRvZRlp1\n5/59Ijs7ojlzqt5GYU3jzRsiHx8iLy+itDSu1Sift2+JJkxgThZxcVyrqbnIasblWvbR1NREYGAg\nunXrBkdHRwwZMgQODg7YunUrtm7dCgA4cuQIWrRoATc3N8yaNQsHDx6Uebxdu9iG6M6dzFdeXXyj\nlYmzM1svvnmTXWnl5nKtiEcSsbHMvdjamkXpGhtzrUj51KnDAsEmTQLat2efU56qQ5WI8BWJgIUL\ngSNHgL/+qtobZ7JSWMhyEj14AJw4oT5Bazxs6bF/f5bHaerUmnFR8jEnTwJjxwKbN7OLFB7VUW0j\nfN++ZRu7ERFV32NCHj75hN3x9OvHrjDv3eNaEQ/AsmP26cP+Nl9/XTMNP8A87s6cYSkr+I3gqoFa\nX/lnZrIvlpkZS3pV3TZ2ZeXgQbbstWcP0K0b12pqLr/+ynI0nTjB58B5T3Iyc8Zo3ZrdBWgqvVwU\nT7W78k9OBjp2BNzcmLHjDf9/DB0KHDsGjBrF0lnwqBYitgy5YQNLe8Ab/v+wsmLBbElJ7C6Vzwuk\nvig9tw8AzJgxA/b29nB1dcVtKRzXIyPZBtLIkewLpqG2P1Hc0aED8O+/zAitW8e1mppDYSEwZgyb\n+0uXgCZNuFakfujosLshQ0Pgiy/4YEW1RR4XI2ly+5w6dYp69OhBRERXrlwhDw8PiX29l3LhApGp\nKdHu3fIoqzkkJDBXu2++IRKJuFZTvcnKIvL2JvL1JcrN5VqN+iMSEX37LZGDA9GzZ1yrqb7IasaV\nntvnxIkTGD16NADAw8MDmZmZePnypcT+jh9nt4q7d/NBTdJibc1S8F65wpaBCgu5VlQ9efGCBTc1\nbswCuKpDxK6y0dBgdTQmTGB3qsouYMRTOZSe20dSm6SkJIn9TZ3KKhvxm5iVw8iIpYTIzmabbTk5\nXCuqXkRHs2XIfv1YIR5+E7NyzJ7NSkV26cKnhlYnlJ7bByid1bOs1124wG+eyUq9esDRo0DDhixn\n/KtXXCuqHly/zq74Fy5kfvw11ZVTXoYPZ95p/fqxO3we+Skulu/1Ss/t83GbpKQkWFlZSexvzx5/\n8f/Ly+3DIxlNTRZx+cMPwKefsiyMjRtzrarqcvo0K2qyfTtLa8wjH127sjt7X192cTJxIteKqibh\n4eEIDQ3HwYNyFquSZ6NBmtw+H274RkREVLjhy6MYfvmFyNKy6hW2URf27GGOBxcvcq2k+hEdTdSk\nCSsOUxPycymapCSiFi2IZsxgm+qy2k65LW5wcDA1bdqUbG1taeXKlUREtGXLFtqyZYu4zddff022\ntrbk4uJCN8uwRrzxVzxHjxKZmBCdPs21kqpFQACRtTXRgwdcK6m+vHhB1Lo10fjxfHWwyhAZSdSo\nEdHq1f/9cMpqO9U6wpdHfi5eBAYMYF4X75yueMqguJjlqw8NZccHfgo8SiAnBxg0iHkF/fknq2jH\nUzYREWzPZM2akt/lahfhy6MYPv0UCA8H/P2BlSv5nCtlUVjIXGWvXmWOB7zhVz7vg8HMzHgnhYo4\nefK/HFKKuojjjX8NwMGBZZ48fJi50/L1gUuSlcU2IbOzmcushDpDPEqidm22od69O3OnjYnhWpH6\n8fvvLFbi5EmgRw/F9csb/xqChQVw7hz7cg0YwOdceU9CArs7atKEucrWq8e1opqHQAAsXQrMm8fy\neV27xrUi9aC4mFWFW7OGfXfbtlVs/7zxr0Ho6QGnTrGSe126AKmpXCvilhs3WHrsMWNYhk4+eItb\nJk5krso9e7Kr3JpMXh4weDDLHxURATRtqvgxZDb+r1+/hre3N5o2bYquXbsiMzNTYjsbGxu4uLig\nZcuWaKvony6eSvPJJyx9xuefAx4eNTfk/tgxdgv9yy/AnDl88Ja64OvLDP/EiSxhYU3co3rxgu2B\n1K3L6kDXr6+ccWQ2/qtXr4a3tzeio6PRpUsXrF69WmI7gUCA8PBw3L59G9f4+zm1QCAAVqwAli1j\nPwJ//cW1ItVBBAQEANOnM4+evn25VsTzMR4eLFfV3r3AuHFAQQHXilTHgwfsbtTHh0VE16mjxMFk\n9Tdt1qwZvXjxgoiInj9/Ts2aNZPYzsbGhtKkqGYthxQeObhyhQWDrVlT/QNucnOJhg8ncnNj2VB5\n1JucHKL+/Ynatyd6+ZJrNcrnzz+J6tdnAYaVQVbbKfOV/8uXL2FmZgYAMDMzKzNTp0AgwBdffAF3\nd3f89ttvsg7HoyTeX2UdPMjyr2Rnc61IOTx9yq6oNDTYOirvyqn+aGszD7UuXYA2bdjntDoiFALz\n5/8XYzJihGrGLXeLy9vbGy9evCj1/IoVK0o8FggEZSZru3TpEiwsLJCamgpvb280b94cHTt2lNjW\n399f/H8+t4/qsLZmBnH6dPYlO3IEcHbmWpXiCAlhm7qLFgHTpvHr+1UJDQ3mCdS6Ncuv9P33rIRp\ndfkbpqWxynwAc0CQZn0/PDwc4eHh8g8u0/0CsWWf58+fExFRSkpKmcs+H+Lv708//vijxHNySOFR\nIH/8wW49d+3iWon8FBYSLVxIZGFBdP4812p45CU2lqWEGDCAKDOTazXyc+4cSyMyb558KS5ktZ0y\nL/v07t0bu3btAgDs2rULfSXsnOXl5SH73TpCbm4uzpw5gxYtWsg6JI8KGD2alShcuZJdLWdlca1I\nNmJjmf/+7dvsKONmk6cK0aQJS1diaspSv1fVZaCiIpYefMgQVh9izRqO3Ixl/bVJT0+nLl26kL29\nPXl7e1NGRgYRESUnJ5OPjw8REcXGxpKrqyu5urqSk5OTOPGbJOSQwqMEsrKIJk5kSaTOnuVajfQU\nFxNt387uXjZurP6b2DWVI0eIzMyIFiwgevuWazXSExVF1K4dUffuRO8WTuRGVtvJJ3bjKZeQEBZa\n3r8/cw/V1eVaUdk8fcr8wzMyWA4UFxeuFfEok5cv2d87Ph7YsYPtC6grRUXMxXj9epZna+pUtp+h\nCPjEbjxKoUcP4N495gXk4MC8gtTtN7qwkH2x2rZlJUCvXuUNf03AzIxVBfvmGxYVPHUq8Po116pK\nExHBlqkuXABu3mROB4oy/PKgBhJ41B0jI3YlfegQsHo1c727c4drVexH6OhRwNERCAtja8Dffsun\naahJCAQsG2tkJHvs6Aj89hu70uaauDi2rj9oEMtbFBwMNGrEtar/4I0/j9R06MDc0QYMYHcEAwcC\nDx+qXgcRM/YdOzI3wM2b2RfLzk661/v7+2PkyJEK1zVmzBgsXrxY4f3yVIyREcvPdOoUuzt1cGAR\nslxksH3+nN2NuLszl+nHj4Evv1Q/91SZjf/hw4fh5OSEWrVq4datW2W2Cw0NRfPmzWFvb481a9bI\nOpzaoBD/WhWgLJ2amsDXXzNvmnbtWHqI9wmoKrscJEmjjY0Nzp49K7G9UMhu89u3ByZPBr76Crh1\nC/D2rty4ZcWkJCcno3bt2nj69Gkpnf369cO3335bYb/v+w4PD4e1iiPJavpnE2Dr/mfPsjTI27YB\nTk7A1q1Abm7l+6qszuhotvTk5MSWIh88YF496lqkRmbj36JFCxw7dgyfffZZmW1EIhGmTZuG0NBQ\nREZG4sCBA3j06JGsQ6oF/BeMoaUFzJ3LUkR/+ikwdiz74v38M0tMJatGSQGDjx8Dfn6AjQ2rSDZn\nDrvNHzMGqFVL7rcixsrKCl26dMGePXtKPB8SEoKQkBCMGTOmwj64dFrgP5v/4eUFnD/P7gZCQthy\ny4wZbP1d2j+RNDqzsoB9+1gits8+AwwNgagoYNMmlkZdnZHZ+Ddv3hxNK8gzeu3aNdjZ2cHGxga1\na9fG0KFDERQUJOuQPGqIri77UkVFAatWsWUhBwf25Vuxgm2+FhZWrs/cXBbmvnAhu4r6/HMgLa0A\nXl6z8OyZFWbNssLcubNR+K7jzMxM9OrVC6ampjAyMoKvry+Sk5PF/cXFxaFTp07Q09ND165dkZaW\nVubYo0ePLmX8Hzx4ACcnJzg5OeHRo0fw8vKCoaEhnJ2d8ddHWfEEAgHy8vLQo0cPpKSkQFdXF3p6\nenjx4gWuXbsGT09PGBoawtLSEtOnT0fRB4vTZ86cQbNmzWBgYICvv/4anTp1wvbt28Xnd+zYAUdH\nRxgZGaF79+5ISEio3MTWMAQC9tk5fhy4fp1Fz44bx+IFpk4F/vc/FmFbGUQi4O5dIDAQ6NULaNAA\n2L+f9ZeQwD7zpqbKeT+KRqlr/snJySVufRs0aFDiS8lTfdDQYJ42u3cDKSlsgys9nbni6esz75uh\nQ9lVe0AAS6V84wa7Mlu+HJg9m4XvJyWxZaTVq9lV/e+/A4mJgLHxCjx9eg13797F3bt3ce3aNSxf\nvhwAUFxcjPHjxyMhIQEJCQmoV68epk2bJtY2fPhwtGnTBunp6Vi8eDF27dpV5tJP3759kZaWhkuX\nLomfu3fvHkaPHo2ioiL4+vqie/fuSE1NxaZNm/Dll18iOjpa3JaIoKWlhdDQUFhaWiI7OxtZWVkw\nNzeHpqYmNm7ciPT0dERERODs2bP49ddfAQBpaWkYNGgQ1qxZg9evX6NZs2aIiIgQ6wwKCsKqVatw\n7NgxpKWloWPHjhg2bJjC/47VlcaNgR9+YHeMJ04AtrZsWcjWlhlwHx+2lLh0Kbtq37yZfT4DAoAF\nC9imctu27Mp+8GDm8PDll+yzeeoU29T95BOu32UlKS8I4IsvviBnZ+dSx4kTJ8RtvLy86ObNmxJf\nf+TIEfrqq6/Ej/fs2UPTpk2T2NbW1pYA8Ad/8Ad/8EclDltb28pFd72j3Cv/v//+G/fv3y91+Pr6\nlvcyMVZWVkhMTBQ/TkxMRIMGDSS2jYmJARHxRw0/3m/4fvx8vXr1EBkZKX786NEjfPLJJyAi5Obm\nYuLEiWjUqBH09PSgp6cHDQ0NFBcXIyIiAiYmJiX6WrBgAUaMGFGmhgsXLsDQ0BBv377F4sWL0bt3\nbxARDh48iDZt2pRo+91332HixIkgIowZMwaLFi0CESEsLAwNGjQo0fbx48fo2bMnzM3NoaenBy0t\nLXz22WcgIqxatQqDBw8u0d7T0xPbt28HEcHBwQE6OjowMDAQH1paWoiIiOD8b8Yf3B4xMhY+Vsiy\nDxFJfN7d3R1PnjxBfHw8CgsLcejQIfTu3VsRQ/LUMCwtLREfHy9+nJCQACsrKwDAunXrEB0djWvX\nruHNmzc4d+6c+IthYWGBjIwM5H1QtPjZs2dlLvsAQIcOHWBkZISgoCDs27cPo0ePFmtITEws8Xl/\n9uyZWAfwnyeRpP6nTJkCR0dHxMTE4M2bN1ixYgWKi4vFfSclJYnbElGJxw0bNsS2bduQkZEhPnJz\nc9GuXTup5o+H52NkNv7Hjh2DtbU1rly5gp49e6LHu7LyKSkp6NmzJwBAU1MTgYGB6NatGxwdHTFk\nyBA4ODgoRjlPtaWwsBBv374VH0KhEMOGDcPy5cuRlpaGtLQ0LF26FCPeJT7PyclBvXr1oK+vj9ev\nX2PJkiXivho1agR3d3f4+fmhqKgIFy9exMkKCsQKBAKMGjUK8+bNw5s3b8R3uu3atYOWlhbWrl2L\noqIihIeH4+TJkxj6Lifv+x8cgNW4SE9PR9YHmfFycnKgq6sLLS0tREVFYfPmzeJzPj4+uH//PoKC\ngiAUCvHLL7+USKc+efJkrFy5EpHvopnevHmDw4cPyzPNPDUd4uFRI2xsbEggEJQ4Fi9eTG/fvqUZ\nM2aQhYUvSbWJAAAgAElEQVQFWVhY0MyZM6mgoICIWEpxLy8v0tHRoWbNmtHWrVtJQ0ODRCIRERE9\nffqUOnbsSDo6OuTt7U3Tp0+nkSNHlqsjLi6ONDQ0aOrUqSWef/jwIXXq1In09fXJycmJjh8/Lj43\nZswYWrx4sfjxuHHjyNjYmAwNDen58+d0/vx5at68Oeno6FDHjh3phx9+oI4dO4rbh4aGUtOmTUlf\nX5+mTp1Knp6etHfvXvH5PXv2UIsWLUhPT4+sra1p/Pjxsk80T41HbuM/duxYMjU1JWdn5zLbTJ8+\nnezs7MjFxYU2bdpEzZo1Izs7O1q9enWF7W/duiWvxEoTEhJSrsawsDDS09MjNzc3cnNzo2XLlqlc\nY2XnnYt5JKpYpzrMJRFRQkICeXl5kaOjIzk5OdHGjRsltlPVnIpEIrK0tKTw8PBK61SHOc3Pz6e2\nbduSq6srOTg40HfffSexHdefUWl0qsN8EhEJhUJyc3OjXr16STxf2bmU2/ifP3+ebt26VeaX+9Sp\nU9SjRw8iIrp06RLVqVOH4uLiqLCwkFxdXSkyMrLM9leuXCEPDw95JVYKoVBItra25WoMCwsjX19f\nler6mMrMOxfz+J6KdKrDXBKxOtS3b98mIqLs7Gxq2rSpyj+bp0+fpoyMDHr79i0tW7aMLC0t6e1H\n+Yql0akuc5qbm0tEREVFReTh4UEXLlwocV5dPqMV6VSX+Vy3bh0NHz5cohZZ5lLuDd+OHTvC0NCw\nzPMnTpwQb5gJBAJoamqiXr16ZQZ9fdjew8MDmZmZZdYHVgbSBqZRGZvcqqIy887FPL6nIp0A93MJ\nAObm5nBzcwMA6OjowMHBASkpKSXaKHtOIyIiYGdnBxMTE5w6dQrHjx9HnTp1Kq0TUI851dLSAsD2\ncEQiEYyMjEqcV5fPaEU6Ae7nMykpCcHBwfjqq68kapFlLpWe2O3DQK/k5GTo6+uLvRgkBX1JCgz7\n0OtBlXrL0igQCHD58mW4urrCx8dHvAmnTnA9j9KijnMZHx+P27dvw8PDo8Tzyp5TPz8/pKWlISsr\nCxEREWjTpo1MOtVlTouLi+Hm5gYzMzN07twZjo6OJc6ry2e0Ip3qMJ+zZ89GQEAANMrIBS3LXKok\nq+f7X6ry3OAktX9PRe0ViTRjtWrVComJibh79y6mT58usYSlOsDlPEqLus1lTk4OBg4ciI0bN0JH\nR6fUeXWZ0/J0qsucamho4M6dO0hKSsL58+cl5spRh/msSCfX83ny5EmYmpqiZcuW5d6BVHouFbEW\nFRcXV+aa7qRJk+jAgQNERBQREUHa2tr04sULIiJauXKleEOVj/DlD/7gD/6o/GFra1vCzhIRNWvW\nTGxny0LpV/69e/fG7t27AQBCoRBCoRD5+fmlgr5iY2M5jZLLzyesXk0wMSH060cIDiYUFpZu5+fn\nV+JxVBRhwQKCqSlh8GBCdDT3EX+SdKr6SMhMwJjjY2C8xhizQ2fj7ou7KC4uLlejUCTEv0//xbAj\nw2C0xgiL/12MrLdZNX4uiQgUHg7y9ATZ24N++gn04kXFOrOyQLt3g9q1Y687cAD00d+gJs5nkUiE\nX5OSYHXpErreuYOjr14hXyisUGd8fj6Wx8fD6tIldL97F7ezuP9sEhFiY2NL2NkrV67AwMAAZmZm\n5dpmuWseDRs2DOfOnUNaWhqsra2xZMkScabCSZMmwcfHB8HBwbCzs4O2tjYCAgLQrVs3iEQijB8/\nHg4ODti6dau8MuTi779ZUicXF5YGtnlz6V/brBmwciXw/fcsIZSnJzBlCrBoEfDRXl2NQFgsxPqI\n9Vh7aS0mu09GzIwYGNQ1kOq1tTRqoXPjzujcuDPiMuLwQ/gPcPjFAT/3+Bn9HforWbma8uoVMHMm\ny0W8YgXLjidtHmtdXWDkSGDECFb95ttvWSa9bdsq9yGvRlzNysKEx49hUrs2jjs7w11PT+rXNqpb\nF983aoS51tb4/flzdLt3D4NMTLCqSRPoclw+7mM7u3PnzopfRGoCF1Ly84mmTSOytiYKCZHuNX5+\nfuWeT04m6tuXyMWF6CMPPJVSkU5lEJcRR+1+b0dddnWh2NexFbaXRuOFZxfI/md7Gvm/kZRdkK0A\nlZWHi7kkIqLgYCJzc6JvvyV6545YHhXqFAqJNm0iMjYm+uUXouJixeisJFzMp7C4mPyePiWzixdp\n/4sXVCzFe69IZ3phIY159IiaRETQlTdvFKS08shqO2us8U9MJGrThmjAAKKMDOlfFxYWVmGb4mKi\n334jql+f6MgR2TXKgzQ6FcmZmDNkGmBKAZcCSFQskuo10mrMKcihscfHkkOgA0WnRcuhUjZUPZck\nEhH5+RFZWRGdOyf1y6TW+fgxkZsb0fDhRHl5MkmUB1XPZ3phIXnfuUOdb9+mlI/iJspDWp1HX70i\nk4sXaUtysowK5YMz419RNGxqaip169aNXF1dycnJiXbu3ClZiAqN/+3bRA0aEK1apdyLnxs32F2F\nssfhmq03tpL5j+YUHheu1HG2XN9CZgFmdOHZhYobV1XeviUaMoTI05Po+XPljZOXRzRsGJGHB9Gr\nV8obh2Ni8/Ko6ZUrNOfJEyoSSXdRIgvRubnU/OpVmv3kCYlU/GXnxPhLEw3r5+cnDplOTU0lIyMj\nKioqKi1ERcb//HkiExOiP/9UyXCUlETUogXR7NnV8wdg+bnlZLvRlp6kP1HJeKdjTpPJWhM6+fik\nSsZTKdnZRF26sNvR/Hzlj1dcTLRwIVHTpkQJCcofT8Xcy84my0uX6JekJJWM97qwkDreukXDHz6k\nQiX+0HyMrLZTLm8faaJhLSwsxJkNs7KyYGxsDE2ONkfCw4EBA1jZtUGDVDOmlRVw7hxw+TIwbRpA\npJpxVYFfmB8OPDiAC2MvwM7ITiVjdrXtir+G/YVxJ8YhKKoalQTNyWHlpBo2BA4dAurWVf6YAgHb\nRJ44EejUidUhrCbczcmB9927WGdri6kfpNxWJoa1a+O0iwsyhEIMf/QIRe/Sdasrchl/aaJhJ0yY\ngIcPH8LS0hKurq7YuHGjPEPKzOXLzOAfOgR88YVqxzY0BE6fBm7eZGUMq8MPwMoLK3Hk0RH8O/pf\nWOiqtlK1RwMPBA8PxsSTExEaE6rSsZVCfj7g6wvY27O6lYqsSi8N33zDCjF//jnw/Llqx1YCkbm5\n6H7vHjbZ22NoBe6OiqZerVo45uyMXJEIo6OiIFLjL7tcxl+aaLyVK1fCzc0NKSkpuHPnDr7++mtk\nZ2fLM2ylefgQ6NeP1Zft3FmlQ4vR1wdCQoB//2WuoVWZrTe2Yvvt7fhn5D8w1eamWnVry9Y4PuQ4\nRh4biYjECE40KAShEBg2DDA3Zy6YZYTvK51Zs4CxY1kh5sxMbjQogMS3b9H93j2sbdIEgziqpF5H\nQwNHnZyQUlCAmU+egNT0B0Cu9RdpyjRevnwZ33//PQDA1tYWjRs3xuPHj+Hu7l6qP39/f/H/vby8\n4OXlJY88AKyYuI8PsH498K7eDGcYGgKhoUD79oC1NSsKXdU4GX0S/uf8cWHsBZVf8X+Mp7UndvXd\nhX6H+uHC2AuwN7bnVE+lIWI+/Lm5wJ9/qv6K/2MWLgRevgT692cf1CpWkfyNUIge9+5hhpUVRpqb\nc6qlXq1aCGrRAp/dvo2AxETMa9hQYX2Hh4dLTJVRaeTZaCgqKqImTZpQXFwcFRQUSNzwnT17Nvn7\n+xMR0YsXL8jKyorS09NL9SWnFInk5hK1bk20fLnCu5aLyEgiU9NKefGpBXee3yGTtSZ0JfEK11JK\nsPXGVmq6qSm9znvNtZTKsWEDkbMzEYc+4qUQCol69yYaN65KeSgUiUTU7c4d+vrxY6l8+FVFYn4+\nNbh8mY4q0aNKVtspt8UNDg6mpk2bkq2tLa1cuZKIiLZs2UJbtmwhIubh06tXL3JxcSFnZ2fat2+f\nZCEKNv7FxURDhxKNGKGen+HTp1n8Tnw810qk41XOK7LZYEMH7x/kWopEZoXMoq57upJQJORainSc\nOaO+H4DsbBaluGED10qkZvaTJ+R9545S3Tll5UZWFtW/eJHuZisnSJEz468oFG38f/yRXfVzEMMi\nNT/+SNSqlWq8+uShSFREn+/6nL77W3I1JnWgSFREXXZ1UWuNYuLi2K1fuHLjIuQiLo7IzEy9Nb5j\n/4sX1CQigtILC7mWUib73ml8rQSNstpOwbsXc45AIFDYxsiFC8yz5+pVoFEjhXSpFIhYqhYDA4Dj\n9Ebl8v3Z73Et5RpCvwxFLQ2O16XLIS0vDa23tcamHpvQu1lvruVIpqAA+PRTYPhwYPZsrtWUz5kz\nbBP4xg3Agtv9nbKIzM1Fpzt38I+rK1wlpOBWJ2Y+eYK4t29x3NkZGgpMXS2z7ZT3V6eiCF8iFibt\n5uZGTk5O1KlTJ4ltFCCFiIhSU1n07qlTCulO6WRlEdnbE+3fz7USyYQ+CSWrdVb0Mucl11Kk4nLC\nZTINMKX4DDVcTiEimjGDqF8/9VyLlMQPPxB17sz2AtSMXKGQHK9epe0pKVxLkYoCkYg8btygHxUc\nUCer7VR6hG9GRgY5OjpSYmIiEbE9AIlCFGD8i4uJevZkebCqErdvszxAMTFcKynJ8+znZP6jOYXF\nhXEtpVKsubiG2m9vT0Wi0pHknBIURGRjU7lkUlwjFBJ16qR+XhNENCEqikZERqrVBm9FxOXlkcnF\ni3RdgZv8stpOpUf47t+/HwMGDBC7gNavX1+eIctl82bmqbZ8udKGUApubiwl9JdfMrdvdYCIMDZo\nLMa3HA8vGy+u5VSKue3nQqu2FlacX8G1lP94/pxF0u7dy9b5qgq1ajHNP//M1lHVhGOpqTibkYFf\n7e3VskJdWdjUq4dAe3sMf/QIuSIRp1qUHuH75MkTvH79Gp07d4a7uzv27Nkjz5BlEhUF+PkB+/ZV\nOfdkACzAUl+fRdurA5tvbEZ6Xjr8OvlxLaXSaAg0sKvvLvx641dcS77GtRy2uTNuHDP+HTpwraby\nNGgA/PILqw2Qm8u1GjwvKMCU6GjsdXDgPI++LAw2NYWnnh6+iYnhVIdcMyfNL25RURFu3bqFs2fP\nIi8vD56enmjXrh3s7UsH5Mga5CUUAqNHA0uWAE2bSqtevdDQAHbsAFq2BHr1Alq35k7Lk/Qn+CHs\nB1wadwm1a9XmTogcWOpaYlOPTRh5bCTuTLqDerXrcSdm2zYgNRVYvJg7DfIycCAQFATMnw8EBnIm\ng4gw4fFjTLC0hKe+Pmc65OVne3u4Xr+O0PR0dDc2rtRr1SLIKyIigrp16yZ+/GFN3vesXr26RFGE\n8ePH0+HDh0v1JY+UlSuJvvii6uyhlce+fUROTiyzLxcIRULqsL0DbYioOj7e5TH0yFCaHTqbOwFP\nn7INnYcPudOgKDIymDfF2bOcSdiZkkKu165RgRr681eWs69fU4PLlylDTvdPWW2n0iN8Hz16RF26\ndCGhUEi5ubnk7OxMDyV8EWR9Aw8esO/Ws2cyvVztKC5mlcC+/56b8X+K+Ik67ugodUEWdSctN43M\nfzSnSwmXVD94cTHR558TleEFVyUJDmab1koKWCqPpLdvqf7Fi3Q7K0vlYyuLKY8f07hHj+TqgxPj\nT1RxhC8RUUBAADk6OpKzszNt3LhRshAZ3oBQyGpRbN4sm3Z1JSWF1Ry4fVu148a+jiXjNcacVMtS\nJocfHqbmgc0pv0jF0XS//Ubk7k4koX5FlWb0aOayqkKKi4up9717tPjpU5WOq2yyioqo0eXLdEZC\nyhtpkdX4V+kgr59/Bo4eZbWpuUqGqCx27GC1tq9cAVSxp0VE6Lq3K7ybeGNeh3nKH1CFEBH6/9kf\nzibOWPb5MtUM+vw54OICnD3L/q1OvH4NODkBx44B7dqpZMgjr17hh/h43HZ3R51q9mUPSU/H10+e\n4H6bNtCWIbmfrEFeVXYWExOBpUu5zYKrTMaOBfT02A+cKth7by/S8tIwx3OOagZUIQKBAIE9ArHl\n5hY8fPVQNYPOnMm8e6qb4QcAIyPgp5+ACROAoiKlD5dZVISZMTH4rVmzamf4AaCHsTE89fTgHx+v\n0nHlnsnQ0FA0b94c9vb2WLNmTZntrl+/Dk1NTfzvf/+Td0gAwPTp7GjWTCHdqR0CAUv5sHIl+6FT\nJq/zX+Pbv7/Fb76/QVOj6rnOSYOVnhWWeC3B5FOTUUxKrrAUHAzcugUsWqTccbhkyBDmArp+vdKH\nWhgXh17GxuhQhb17KuInOzvsevECd3NyVDeozAtNJF2E7/t2nTt3pp49e9KRI0ck9lUZKSdOsLKj\nXHnEqBJ/f5YNQJlMODGBpgdPV+4gaoBQJKS2v7WlHbd2KG+Q3Fyixo2JQkOVN4a6EBtLZGzMksAp\niatv3pD5pUtKSYimbmxLTqZ2N29WugC8rGZc6RG+ALBp0yYMHDgQJiYm8gwHAMjLYwFRv/4K1Kkj\nd3dqz/z5wP37wKlTyun/StIVnIw+iWWdVbQWziG1NGphc8/NWHB2AdLz0pUzyKpVgLs7q4hV3WnS\nhCWnmzlTKd2LiDA5OhprmzSBYe2qGW9SGcZbWEAAYLuKSmkqPcI3OTkZQUFBmDJlCgDpAsPKY+VK\ntsfUpYtc3VQZ6tZlMTXTp7NSr4pEVCzClFNTEOAdAP261feW+kNaWbTCQMeBWHh2oeI7j45mOUZ+\n+knxfasrc+cCjx4BJ08qvOstKSnQq1ULI1Rch5crNAQC/Gpvj0VxcUhXwV6K0iN8Z82ahdWrV4t3\npKmcXemKInyfPAG2bAHu3pVVcdWkWzcW+RsQAPzwg+L63XpzK/Tq6GF4i+GK67QKsPzz5XD4xQET\nUibA3bJ0OVGZIGK3pN99B1hZKabPqkCdOsCmTcDUqcAXX7CrFQXwqrAQ/vHxCHN1rVK5e+TFTVcX\ng01NsSguDpvLSFdQZSJ8GzduTDY2NmRjY0M6OjpkampKQUFBpfqSRoqPD9GaNfIorro8e8aWVxVV\n+Ck1N5VM1prQvRf3FNNhFWPHrR3k8ZuH4oLZgoKIHByIasDatET69SNaulRh3X0VFUWznjxRWH9V\niYzCQjK/dIluShnMJqsZV3qE74eMGTOGjh49KllIBW/g5Em2yVtQII/iqs3SpUQDBiimr0l/TaIZ\nwaoN1FEnRMUiavtbW/rj9h/yd5afT9SkCSvNWFOJiyMyMiJSQK766+82eTOrW3BcJfgtOZna37wp\nVbpqWY2/XGv+mpqaCAwMRLdu3eDo6IghQ4bAwcEBW7duxVYFlqYqLGT7Shs2VM2MnYpi7lzg5k0W\n1CYPd17cwbGoY/D38leIrqqIhkADm3pswoKzC5BdkC1fZ+vXM39+b2/FiKuK2NgAX38NzJMvQJCI\nMCMmBisaN4Z+FczYqSjGWljgbXExDrx6pbQxqkSE748/MoOnLI+XqsTRoyx76a1bskX+EhG8dnlh\nmPMwTHafrHiBVYwxx8fAXMccq79YLVsHKSnM8F+7xrxfajK5uYCDA7B/PytVKQP7X77E+sREXGvd\nWqGlDqsil968wdDISES1bVtu5C9nEb4VBXnt27cPrq6ucHFxQYcOHXDv3r1K9f/qFbBmjUpiSaoE\n/fuzAMvff5ft9f979D9kvs3EhFYTFCusirKyy0r8fut3PM14KlsHCxeySNeabvgBQFsbWL0amDUL\nKK58IF2uSITvnj7FRnv7Gm/4AaCDvj4+1dfHmoQE5Qwg02LRO6QJ8rp8+TJlZmYSEav36+HhIbGv\nsqRMmkQ0a5Y8Kqsft28TmZkRvZtWqckvyqfGGxrT2afcpeRVR1acX0EDDsmwmXL9OpGFBSvEzMMo\nLiby9CT6o/J7Kf5xcTTkwQMliKq6PMvPJ6MLFyghv+ykhLKacaUHeXl6ekL/XVi2h4cHkpKSpO7/\n/n2WO0qR7o3VATc3VvClsuUqN17ZCBczF3ze+HPlCKuizG43GzdSbuBc/DnpX0TErnCXLQN0dZUn\nrqohELA4h4ULgUqkKkguKMCmpCSssbVVoriqR8O6dTHVygoLnsp4Z1oOSg/y+pDt27fDx8dHqr6J\ngG++YcWPDA3lUVk9Wb6cZf6U9jPxKvcVAi4HIMA7QLnCqiD1atfD6i9WY86ZOdLn/Tl6lBm3MWOU\nqq1K4uEBeHkBa9dK/ZKFT59ikqUlGikoTqA6Md/aGmGZmbiWlaXQfuUy/pUJvggLC8OOHTvKTf72\nISEhQEICMGmSrOqqN+bmwJw5LKZIGvzC/DDCZQTsjUuXz+QBhjgNwSe1PsHee3srblxQwPJurFvH\nCpzzlGbVKlb3V4o7/ZvZ2TiTkYHvGjZUgbCqh46mJpY3bow5MTEybeyWhVy+VFZWVkj8IOVkYmIi\nGjRoUKrdvXv3MGHCBISGhsKwnMv49xG+xcXArl1eCAz0Qg1I6SEzc+awrKaXLpVfFzwyNRJHHh3B\n42mPVSeuiiEQCLC+63oMPjIYAx0HQqu2VtmNAwMBR8eak2NEFho2ZFdu338P7NpVZjMiwjcxMVhi\nY1Mli7GrilHm5tiYlISjqamoHxnJfYSvNEFez549I1tbW4qIiCi3rw+lbN5M1Llz9ajJq2x272bV\nzMqbq577etL6y+tVJ6oKM+jPQbTs3LKyG6Slsbqh5QQz8rzjzRsic3OiW7fKbBKUmkpOV69SUTWo\nyats/nn9mppERNDbj+ZKVjOu9DKO48ePJyMjI3JzcyM3Nzdq06aNZCHv3oAUnxeeDxCJiFq1Ijp0\nSPL5f2L/oSYbm9DbohqQ/1oBvC9l+SL7heQGs2YRTZmiWlFVmXKu5ApFImp25QoFp6VxIKxq4nP3\nLv30URS1rMZf7YK8Fi1ia/27d3OtqOoQFgaMH8+SK36Y5rqYitF6W2ss/HQhBjkN4k5gFeOb098g\ntygXW3ptKXkiJoallI2MBExNuRFX1RAKWRBcQADQs2eJU78mJ+NYWhrOuLjUqORt8vAwNxed79zB\n47ZtxWmuq0UZx+RklhF3xQqulVQtOndmJVV/+aXk83vv7UU9zXoY6DiQG2FVlO8/+x5HHx1FZGpk\nyRMLFrCNFt7wS4+mJovSnDeP/RC8I0soxNL4eAQ0acIb/krgpK2NvvXrY8WzZ3L3pZIyjjNmzIC9\nvT1cXV1x+/btMvtavJiVPf3Ae1TtUMhGixJYu5YFV2ZksMen/zmNRf8uQoB3gNp+uT6cy/Dw8BJu\nw1xiVM8I33X4Dt/9w1ypwsPDgYgI4MoV5tuvpqjrZxO9erEfzJ07ATCdaxIS0M3ICG5qHCOhrvO5\nxMYGO1+8QJycBT7kMv4ikQjTpk1DaGgoIiMjceDAATx69KhEm+DgYMTExODJkyfYtm2buKiLJE6d\nkt51kSvU9QPh4AD06/ffXVPA/gC0sWqDDg3LcQNSMN27d4efn1+p54OCgmBhYYHij0L+y5tLGxsb\n/Pvvv4qWKDXT2k7D/Vf3ER4fjvCwMODbb1lAl1Y5XkAqJj4+HhoaGtDV1YWuri569eoFX19f/PPP\nPyXaBQYGwt3dHXXr1sXYsWNVL1QgYMs+fn5ATg5O/PMPtqSkYHnjxqrXUgnU9btuUacOpltZ4fu4\nOLn6UXqE74kTJzB69GgALMI3MzMTL1++lNjfokVANa7RrHSWLGEXVzcfpeFy4mWs6rJKpeOPGTMG\ne/eW9pPfs2cPRowYAQ0N6T9usq5jKoo6mnWw8vOV+Pbvb0FRj4DsbGDkSKlfTxUULlIkb968QXZ2\nNqZMmQJvb2/069cPuz5wr7SyssLixYsxbtw4leiRiLs7C/xatw5hmZmYZGkJaz6gS2bmWlsjPDMT\nN+QI/FJJGceP25SV4oEP6JIPc3PgyBHg9yfL4GzqjKbGkisBKYs+ffogPT0dFy5cED+XkZGBU6dO\nYdSoUSgoKMCsWbNgZWUFKysrhIaGorCwsFQ/I0eOREJCAnx9faGrq4sff/wRADBo0CBYWFjAwMAA\nnTp1QmTkf2vy6enp8PX1hb6+Ptq2bYtFixahY8eO4vNRUVHw9vaGsbExmjdvjsOHD5f5Pnbu3AlH\nR0dM6jAJSUsTcfPkKbZu/S6gKygoCG5ubtDX14ednR3OnDkDgFWfW7RoETp06ABtbW3ExcXh8uXL\naNOmDQwMDNC2bVtERESIx/njjz9ga2sLPT09NGnSBPv37wcAxMTEoFOnTjAwMICJiQmGDh0q1fxr\na2tjxowZ8Pf3x/z588XP9+vXD3369IGxsbFU/SiN1atx39cX0Xl5mM8HdMmFjqYmjjg5oXG9erJ3\nIo/b0ZEjR+irr74SP96zZw9NmzatRJtevXrRxYsXxY+7dOlCN2/eLNWXra0tAeAP/uAP/uCPShy2\ntrYy2W+5rvylifD9uE1SUhKsJNQ4jXkXuswfVfu4ePEiDAwMUFBQACJC+/btsWHDBhARbG1tERIS\nIm57+vRp2NjYgIgQFhaGBg0aiM/Z2Njg7NmzZY6TkZEBgUCArKwsCIVC1K5dG9HR0eLzixYtwqef\nfgoiwsGDB9GxY8cSr584cSKWLFki1Xvq27cvNm7cKH7dnDlzJLbz8vKCn5+f+PHu3bvh4eFRoo2n\npyf++OMP5ObmwsDAAEePHkVeXl6JNqNGjcLEiRORlJRUrq64uDgIBAKIRKISz+fn50MgEODy5csl\nnl+0aBHGjBnD+WeEPxR7xMTEyGS/5TL+7u7uePLkCeLj41FYWIhDhw6hd+/eJdr07t0bu9857V+5\ncgUGBgYwMzOTZ1geNaZDhw6oX78+jh07htjYWFy/fh3Dh7MC8SkpKWjUqJG4bcOGDZGSkiJVv8XF\nxfjuu+9gZ2cHfX19NG7cGAKBAGlpaUhNTYVQKCy1vPieZ8+e4erVqzA0NBQf+/fvL3PvKSQkBO3a\ntYOxsTEMDQ0RHByM9PR0AOzixbaczJMfakhJSUHDj5Y3GjVqhJSUFGhpaeHQoUPYsmULLC0t0atX\nL17cEx8AACAASURBVDx+zNJvrF27FkSEtm3bwtnZGTvfeclIy/ulVyMjoxLPE1Gl+uGp3ii9jKOP\njw+aNGkCOzs7TJo0Cb/++qtChPOoL6NGjcLu3buxd+9edO/eHSYmJgAAS0tLxMfHi9slJCTA0tJS\nYh8fu6fu27cPJ06cwNmzZ/HmzRvExcWJr3xMTEygqalZ6i70PQ0bNkSnTp2QkZEhPrKzs/HLx4ER\nAAoKCjBgwADMmzcPr169QkZGBnx8fMSG09rautwrrQ91W1lZ4dlH/tjPnj0T3/l27doVZ86cwYsX\nL9C8eXNMmMAK7JiZmWHbtm1ITk7G1q1bMXXqVDytRErfY8eOwczMDM2aNStTGw+P3H7+PXr0wOPH\njxETE4MFCxYAACZNmoRJH+zeBgYGIiYmBnfv3kWrVq3kHZJHzRk1ahT+/vtv/P7772JPLwAYNmwY\nli9fjrS0NKSlpWHp0qUYWYYHjZmZGWJjY8WPc3JyUKdOHRgZGSE3NxcLFy4Un6tVqxb69+8Pf39/\n5OfnIyoqCnv27BEbu549eyI6Ohp79+5FUVERioqKcP36dURFRZUat7CwEIWFhahfvz40NDQQEhIi\n3tAFgPHjx2Pnzp34999/UVxcjOTkZPEVO1Dy6trHxwfR0dE4cOAAhEIhDh06hKioKPTq1QuvXr1C\nUFAQcnNzUbt2bWhra6PWuw3lw4cPi50iDAwMIBAIyvWUej/my5cvERgYiKVLl2LVqv88vUQiEd6+\nfQuhUAiRSISCggKIRKIy++OpIZCKCQkJoWbNmpGdnR2tXr1aYpvp06eTnZ0dubi40C0OkvxUpDEs\nLIz09PTE+YqWLSsnEZiSGDt2LJmampKzs3OZbbicRy8vLzIyMqLRo0eLdb59+5ZmzJhBFhYWZGFh\nQTNnzqQzZ86Qnp4e2draUu3atcVzGRQURA0bNiQDAwNat24d5eTkUJ8+fUhXV5dsbGxo9+7dpKGh\nQbGxsURElJqaSj179iQ9PT1q27YtzZ8/n7p06SLW8/jxY+rZsyeZmJiQsbExdenShe7evSs+n5CQ\nQF5eXuTo6EgWFhakq6tLBgYGNHLkSBo2bBgtXryYiNicmpubU926dUlbW5vs7OzozJkz4ve8ffv2\nEvNw8eJFat26Nenr65O7uztdunSJiIieP39OnTp1In19fTIwMKDOnTvTo0ePiIho3rx5ZGVlRTo6\nOmRra0u//fabRJ329vYkEAhIR0eHtLW1ydTUlHr27Elr164t8fns3LkzCQSCEseSJUsU/ScvQX5+\nPrVt25ZcXV3JwcGBvvvuO4ntuP6uS6NTHb7vRKxyopubG/Xq1Uvi+crOpdzGv7JGqEGDBuWWfTx1\n6hT16NGDiIiuXLlSZtlHZSFNacqwsDDy9fVVqa6POX/+PN26davMeed6Ht9TkU5lzeW8efNozJgx\nUrd//vw53b59m4iIsrOzqWnTpmr32ZRWpzp8PomIcnNziYhl//Xw8KALFy6UOK8O80lUsU51mc91\n69bR8OHDJWqRZS7lXvYZO3YsQkNDyzz/YYTv9OnTkZ2drbCgMGUgTeAawP3mWceOHcutjcD1PL6n\nIp2AYuby8ePHuHfvHogI165dw44dO9CvXz+pX29ubg43NzcAgI6ODhwcHEptRqvDnEqjE+D+8wkA\nWu+ioQsLCyESiUptQKvDfEqjE+B+PpOSkhAcHIyvvvpKohZZ5lJu418ZI2RgYAAAYlHyBoUpA2kC\n19670bm6usLHx6dEsJG6wPU8Soui5jI7OxsDBgyAjo4Ohg4dirlz55byPJOW+Ph43L59Gx4eHiWe\nV7c5LUununw+i4uL4ebmBjMzM3Tu3BmOjo4lzqvLfFakUx3mc/bs2QgICChz70eWuVR66ZwPRQkE\nAmhrayMpKalcd8+Pf9lU6aUgzVitWrVCYmIitLS0EBISgr59+yI6OloF6ioHl/MoLYqay/dux/KS\nk5ODgQMHYuPGjdDR0Sl1Xl3mtDyd6vL51NDQwJ07d/DmzRt069YN4eHh8PLyKtFGHeazIp1cz+fJ\nkydhamqKli1blptvqNJzqYi1qLi4uDLXdD+M8I2IiCAjIyNxhO/KlSvFG6p8hC9/8Ad/8EflD1tb\nW5o0aRIdOHBAbHebNWtGL16UUZDoHUrP5/9hhK+7uzuys7MhEolKBYXFxsZyHil3/jyhc2eClRVh\n0SLC3buE4uKSbT6M4ExNJezYQejUiWBpSfjpJ0J+PvcRfx/rVNejKmhUF52vcl7hm9PfwHC1IQb9\nOQhBUUHILcwtU2ehsBDhceGY/NdkGK42xJdHv0R0WrRKNavzfFYnnbGxsTIF0yrd+H8o6saNG2jS\npAlGjBhRKiiMS5KTgYEDWdLGUaOAuDiWvdfFhWWjLYv69YGxY4HwcODkSeDff1lRleBglUnnqeaI\nikXYdHUTHH91RH5RPu5NuYc/B/2J3s16l1tkvnat2uhk0wmbe21G3Mw4NK/fHJ7bPTH/7/nIK8pT\n4TvgUQWyBNPKveY/bNgwnDt3DmlpabC2tsaSJUtQVFQEgAV7+fj4IDg4GHZ2dtDW1sb+/ftLBXpN\nmjQJkydPlleKTBw4AMycCUyeDOzZA8iaJK9lS+DECeDMGWDKFJZd8+efAQnLxjw8UvEs8xlGHBsB\nAQQ4P+Y8HEwcZOpHv64+Fn22CF+1+gpzTs+B6xZX7Ou/D22t2ipYMQ+XBAYGVu4FpCaoWkpBAdHk\nyUT29kQSkoyWSVhYWIVtsrOJxo4lat6c6F3cjsqRRifXVAWNRNzoDI4OJtMAU1p7cS2JikVSvUZa\nnYcfHiaTtSYUeDWQiiUUVlc2/N9dschqO+W2uBVFw6amplK3bt3I1dWVnJycaOfOnZKFqND4p6cT\nffYZUZ8+RG/eKG+c338nMjUl+ucf5Y3BU/3YELGBLH60oAvPLlTcWEZi0mPI+VdnmnJyChWJipQ2\nDo/y4cT4SxMN6+fnJw6ZTk1NJSMjIyoqKv1hU5XxT0oicnQkmjOHSCTdBZVchIezH4CDB5U/Fk/V\npri4mOadmUcOgQ4UnxGv9PHevH1DXfd0pT4H+lB+Ub7Sx+NRDrLaTqWXcbSwsEDWu1JjWVlZMDY2\nhqam0sMLJJKQAHz2GdvUXbcOqERVwf+3d95RUV1dG38AS+gjKqgoKiBdAYNgLAE1oIKgxl7RoC+x\nYGzBEnsUscVoNBprRMUau4iigp1ggr2gKCgiWEFBqcP+/rhxPpABhhlm7gXOb627FjNz5pxnNjP7\n3nvO2XvLjasrcPo0MHkyUKiyHoNRBCLChBMTcDbxLC6MvICmoqZKH1Ovth6ODjqK2jVqo+funsjK\nU6wgOKNyofQyjqNHj8adO3fQqFEj2NvbY9WqVYoMKTfPnwOdOwPjxwOFKtyphJYtgTNngJkzgZ07\nVTs2Q/gQESadnISY5zE4Pew06mqprtxiLY1a2PntTtTVrIvee3ojJz9HZWMz+EUh5y9LNF5QUBAc\nHBzw/PlzXL9+HePGjUNGRoYiw5abtDTAwwPw8wMmTVLp0BKsrICTJ4EpU4Djx/nRwBAmC84twLkn\n53By6Enof6Gv8vFrqNdASO8QaNXUwrCDwyAuYOmeqwMKzb/IUsbx8uXL+OmnnwAAZmZmaN68OeLi\n4uDk5FSsv3nz5kn+dnNzKxYKLg/Z2YCPD9C1KzB9usLdKYSdHXD4MNCjB3cCcGY77ao9m2I3IeRm\nCC5/dxmiL0S86aihXgOhfULhudMTk09Oxqru/NyhM8omKiqq1DQPMqPIQkNeXh6ZmppSQkIC5eTk\nSF3wnTRpEs2bN4+IiFJTU8nY2JjevHlTrC8FpUiloIBo8GCivn1Vs7grK4cPEzVsSJSo/DU9hoCJ\neBRBRsuMKO51HN9SJKRlpZHNWhtaHb2abykMGZHXdyp05V+4jKNYLIafn1+RiF1/f3/MnDkTI0eO\nhL29PQoKCrB06VKpKVOVQXAw8PAhcO6cahZ3ZcXHB4iPB3r2BC5dArS1+VbEUDXxb+Mx5MAQ7O27\nFxZ1LfiWI0H0hQjHBh1Duy3tYFXPCu5m7nxLYigJtf/OHLyjpqaGipQSHs7N8cfEAP+VTBUURMCI\nEUBuLhAaWnoaCUbVIjM3E203tcW4NuMwps0YvuVI5VziOfTf3x/RftFoXqc533IYpSCv76ySzv/J\nE24+ff9+oGPHCulSKWRlAe3bc/mBAgL4VsNQBUSEIQeG4IsaX2Czz2ZBptn+xMorK7Hj1g5c+u4S\nvqjxBd9yGCUgr+9UeDIkPDwcVlZWaNGiBZYsWSK1TVRUFBwdHWFnZ1chi7ilkZsL9O8P/PijsB0/\nwOUR2r+fSyL3zz98q2Gogo2xG3Hn1R2s9VwraMcPABPbTkRzUXNMOTmFbykMZaDIQoMsEb5paWlk\nY2NDSUlJRMRF+UpDQSkSfvyRyMuLW+ytLOzbR2RqqtxUEwz+ufXiFtVbWo/uv7rPtxSZSctKo+a/\nNqe/7v7FtxRGCcjrO5Ue4RsaGoo+ffpItoDWq1dPkSFL5cwZbv78zz8r1xx6377AN98A48bxrYSh\nLLLzszFw/0Asc18Gy3qWfMuRGdEXIuzqswtjjo9B8vvkst/AqDQoPcL34cOHePv2LTp16gQnJyds\n375dkSFLJC2NW0DdupXLs1/Z+OUXbnF6zx6+lTCUwYzTM2BT3wa+9r58Syk3Lo1dEOAcgBGHR6CA\nCviWw6ggFNrqKcucZV5eHmJjY3HmzBl8/PgRX331Fdq2bYsWLVoUa6tIkNf48UDv3oB7Jd2Zpq0N\n7NjBBYB17Ag0asS3IkZFEZkQiX139+HmmJuCn+cviekdpuP4w+NYG7MWAS5sdwKfVFSQl9IjfJs0\naYJ69epBU1MTmpqa+Prrr3Hjxo0ynX95+Osv4OpV4Pp1ud4uGNq0Afz9uePIkco1dcWQTkZOBr47\n8h02eG+AgaZq4luUQQ31GtjWaxvabW6H7i26w9zAnG9J1ZbPL4znz58vVz8KTfs4OTnh4cOHSExM\nLFaT9xM9e/bExYsXIRaL8fHjR/z999+wsbFRZNgivH7NXfX/+SegVXJVu0rDrFlAUhLwX+VLRiUn\nMCIQnZt1hmcLT76lKIxFXQvM/no2Rh4eyaZ/qgAKOf/CEb6f1+T9FOVrZWWFbt26oVWrVnBxccHo\n0aMr1Pn/8AMwaBDQrl2FdckrtWoBW7ZwW1VTU/lWw1CEqMQoHH1wFCu6ruBbSoUR4BIAIsLvV8uu\nEcsQNpU6yOvECe6q/9atqnHVX5gZM7gUEPv28a2EIQ9ZeVlotb4VVnisgI+lT9lvqETcf30fHbZ0\nQKx/LEz0TfiWU+3hLciLLzIzuULp69dXPccPAHPmcGsYR4/yrYQhDwvPL4RDA4cq5/gBwKqeFX5w\n+QHjwsZVaEoWhmpRSYQvAFy9ehU1atTAgQMHFB0SADBvHrcrprLu7ikLTU3gjz+4O5vMTL7VMMrD\n7Ze3sSF2A1Z3W823FKUxrcM0PE57jAP3Kub3zFA9Ck37iMViWFpa4vTp0zA2NkabNm2wa9cuWFtb\nF2vn7u4OLS0tjBw5En369CkupBy3LjducE7/9m3A0FBe9ZWDYcOABg2AZcv4VsKQhQIqgOufrhhk\nNwhj24zlW45SufDkAgb9NQj3xt2Dbm1dvuVUW3iZ9pElwhcAfvvtN/Tt2xf169dXZDgAQEEBMHYs\nsGhR1Xf8AFdreNs2bl2DIXxCboQgJz8H/l/68y1F6XRs2hEeZh6YGzWXbykMOVB6hG9ycjIOHz6M\nMWO41LWKBrls2waIxVy65uqAoSEwfz6X+oFNrwqbtKw0TD89Heu81kFDXYNvOSphqftS7Li5A7de\nsKuTyobSI3wnTpyI4OBgya1JabcnZUX4pqVxu2COHxdWcRZl87//AZs3c8Xfhw7lWw2jJGZHzkZv\nq974stGXfEtRGfW06mG+23yMCxuHcyPOVdoI5spERUX4KjTnHx0djXnz5iE8PBwAsHjxYqirq2Pa\ntGmSNqamphKH//r1a2hpaWHjxo3FgsFkmbcKCADy8rgdPtWN6GigTx/g/n1Al02vCo4bqTfgscMD\n98bdq9SRvPIgLhCjzcY2mNpuKga3HMy3nGoHL8Vc8vPzYWlpiTNnzqBRo0ZwdnaWuuD7iZEjR8Lb\n2xvffvttcSFlfIBbt4AuXYB794C6deVVXLkZORKoXx9YupRvJYzCEBFc/3TF0FZD8b8v/8e3HF64\n9PQSBuwfgPvj70Onlg7fcqoVvCz4yhLhWxEQcZG8c+dWX8cPAIsXc9G/Dx7wrYRRmD139iAjNwN+\njtVkIUoK7U3aw62ZGxZfWMy3FIaMVIoI37/+4vb1X7sG1FBolaLys2wZV5D+2DG+lTAA4GPeR1it\nscLOb3eiY1OBl45TMsnvk9FqfStcHX0VpnVM+ZZTbRBsGcedO3fC3t4erVq1Qvv27XHz5s1y9Z+d\nzeW5WbWKOX6AuwOKiwNOnuRbCQMAll1ahnZN2lV7xw8AxnrGmNx2Mn6M+JFvKQxZkKv+13/IUsbx\n8uXLlJ6eTkREJ06cIBcXF6l9lSQlOJioZ09FVFY9Dh8msrEhysvjW0n1JuldEhksMaDEtES+pQiG\nj7kfqenKphSVEMW3lGqDvG5c6UFeX331FfT19QEALi4uePbsmcz9v3jBTXMsX66IyqqHtzfQsCGX\n/oHBHzPOzMAYpzFoKmrKtxTBoFlTE0u+WYKJJydCXCDmWw6jFJQe5FWYzZs3w9NT9rzms2cDvr6A\nOasbUQQ1NS7yd8ECID2dbzXVk6vJV3E24Symd5jOtxTB0d+2P7RqaiHkBitKIWQUcv7lCeiIjIzE\nli1bSk3+Vphbt4BDh7jiJozi2NtzdwBBQXwrqX4QESafmowFbgvYtkYpqKmp4RePXzArchYyc1lW\nQqGi9DKOAHDz5k2MHj0a4eHhqFOnTon9FY7wPX7cDbNmuaGU5tWen38GWrbkUls3b863murDwfsH\n8T7nPUY4jOBbimBxaewC16auWH55Oea5zeNbTpWioiJ8FVrwzcvLI1NTU0pISKCcnBypC75Pnjwh\nMzMzunLlSql9FZYSHk5kYUGUm6uIuurBggVEAwbwraL6kJOfQ+arzSniUQTfUgRPYloiGSwxoOT3\nyXxLqdLI68aVHuS1YMECpKWlYcyYMXB0dISzs3OpfYrFwNSpwJIlQM2aiqirHkyeDFy8yKV/YCif\ndVfXwdzAHN+YfsO3FMHTVNQUo1uPxuyzs/mWwpCC4IK8Nm0Ctm8HoqK4hU1G2WzdyiV+u3CB2UyZ\npGWlwXKNJc76noWdoR3fcioF77LfwWKNBSKGRaCVUSu+5VRJqkQZxw8fuBQOy5czJ1Yehg8HMjKA\nCiqSxiiBoAtB6GXVizn+cqD/hT5mdZzFAr8EiErKOE6YMAEtWrSAvb09rl27VmJfK1YAX38NtGmj\nqKrqhYYGFw8xfTqX9bSyEhUVVWTrsJBITE/ElutbMN9tPt9SKh3+Tv5ISEvAqUen+JbCKIRCzl8s\nFmP8+PEIDw/H3bt3sWvXLty7d69Im7CwMMTHx+Phw4fYsGGDpKiLNFatEv7WxQpZZVcCHh6Aqen/\nB37xpbNbt26YO7d4ZafDhw+jYcOGKCgokDxXlsZmzZrh7NmzFS2x3ERFReGnsz8hwDkADXUb8i2n\nCImJiVBXV4euri60tLTQoEEDeHt74/Tp05I2ubm58PPzQ7NmzaCnpwdHR0dJGnZVUEujFhZ3WYzA\niECIC8SC/Q19TmXRKS9Kj/A9cuQIfH19AXARvunp6Xjx4oXU/kaMEP6WRSF/IZYtAxYuBN6940/n\niBEjsGPHjmLPb9++HUOHDoV6oSo8ZWmUdy6zogk9GorIhEhMbTe1XO+jMooXVSTv3r1DYGAgbt68\nCXd3d/Tu3Rvbtm0DwKVeNzExwfnz5/H+/XssXLgQ/fv3x5MnT1SiDQC+tf4W2rW0sePmDkH/hgpT\nWXTKi0rKOH7epqQUDz/9pIgaRqtWwLRp/Eb99uzZE2/evMGFCxckz6WlpeH48eMYPnw4cnJyMHHi\nRBgbG+OXX37BpEmTkJubW6yfYcOG4enTp/D29oauri6W/5fjo1+/fmjYsCFEIhFcXV1x9+5dyXve\nvHkDb29v6Ovrw9nZGbNmzULHjv+fcO3+/ftwd3dH3bp1YWVlhX379pX4ObZu3QobGxvo6elh6/qt\n6Pymc5GArsOHD8PBwQH6+vowNzfHqVPclIabmxtmzZqF9u3bQ1tbGwkJCbh8+TLatGkDkUgEZ2dn\nXLlyRdLPn3/+CTMzM+jp6cHU1BShoaEAgPj4eLi6ukIkEqF+/foYOHCgTPY3NDTEhAkTMG/ePElR\nJS0tLcydOxcmJiYAAC8vLzRv3hyxsbEy9VkRfAr8ql2jtsrGZJSOSiJ8P7/6Kel9BtWrAJJSmDQJ\naMpjqhlNTU30798fISH/H9q/d+9eWFtbo2XLlli0aBFiYmJw48YNfP/994iJicHChQuL9bN9+3aY\nmJjg2LFjyMjIwNSp3FW3l5cX4uPj8erVK7Ru3RpDhgyRvGfcuHHQ1dXFixcvsG3bNoSEhEi+ax8+\nfIC7uzuGDh2KV69eYffu3Rg7dmyxacpPGBkZ4fjx4zhx+wS0Wmrh4KqDkvWqmJgY+Pr6YsWKFXj3\n7h3Onz+PpoWMvmPHDmzatAmZmZnQ1taGl5cXJk6ciLdv32Ly5Mnw8vJCWloaPnz4gB9++AHh4eF4\n//49rly5AgcHBwDA7Nmz0a1bN6SnpyM5ORkTJkwo1/+hd+/eePnyJeLi4oq99uLFCzx48AC2trbl\n6lNRXBq7YKCdbCcxhgpQJLjgypUr1LVrV8njoKAgCg4OLtLG39+fdu3aJXlsaWlJqampxfoyMzMj\nAOxgBzvYwY5yHGZmZnL5b6VH+B4/fpy6d+9ORNzJoqSUzoyqhbm5Oe3evZvi4+OpZs2a9PLlSyIi\n0tTULPIduXfvHtWqVYuIiCIjI6lx48aS15o1a0ZnzpyRPBaLxTRt2jQyMzMjPT09EolEpK6uTo8f\nP6aUlBRSU1OjrKwsSfv169dThw4diIhoyZIlVKtWLRKJRJJDR0eHxo4dK1V/WFgYubi4kIGBAYlE\nIqpVqxbNmTOHiIg8PT1p7dq1Ut/n5uZGmzZtkjwODg6mfv36FWkzcOBACgoKIiKikydPkru7O4lE\nIvLy8qL79+8TEVFqaiqNHj2aGjVqRLa2trRlyxap4yUkJJCamhqJxeIiz8fHx5Oampqkv0/2GzBg\nAHl5eVF+fr7U/hjVB6VH+Hp6esLU1BTm5ubw9/fH77//rsiQjErC8OHDERISgh07dqBbt26oX78+\nAKBRo0ZITEyUtHv69CkaNWoktY/Ppwd37tyJI0eO4MyZM3j37h0SEhIki6r169dHjRo1iuWa+oSJ\niQlcXV2RlpYmOTIyMrB27dpi4+bk5KBPnz4IDAzEy5cvkZaWBk9PT8n0ZZMmTRAfH1/iZy+s29jY\nuNjC6pMnT2BsbAwA8PDwwKlTp5CamgorKyuMHj0aADfttGHDBiQnJ+OPP/7A2LFj8fjx4xLH/JyD\nBw/CyMgIlpaWAAAigp+fH169eoW//voLGhoaMvfFqKLwe+5hVFUSExOpZs2a1LhxY9q/f7/k+Vmz\nZlG7du3o1atX9OrVK2rfvj3Nnj2biIpf+bdt25Y2bNggefz777+Tg4MDvX//njIzM2nMmDGkpqZG\njx49IiKiAQMG0ODBg+njx4907949MjExoY4dOxIR0fv376lp06a0fft2ys3NpdzcXIqJiaF79+4V\n0/7+/XvS0NCgc+fOUUFBAYWFhZGWlpZEZ0xMDIlEIjpz5gyJxWJ69uyZ5Ar78yv/N2/ekEgkotDQ\nUMrLy6Pdu3dTnTp16M2bN/TixQs6dOgQZWZmklgspjlz5pCbmxsREe3du5eSkpKIiOj27dukqalJ\nCQkJxbR+uvL/dCWfmppKv/32G+nq6tLWrVsl7fz9/alt27aUmZkp43+QUdVRufM/ceIEWVpakrm5\nebH1gU8EBASQubk5tWrVimJjY1WssGyNkZGRpKenRw4ODuTg4EA///yzyjWOHDmSDA0Nyc7OrsQ2\nfNvRzc2NateuTfXr15fozM7OpgkTJlDDhg2pYcOG1KdPH9LV1SUHBwcyMzMjfX19yfsPHz5MJiYm\nJBKJaMWKFZSZmUk9e/YkXV1datasGYWEhJC6urrE+b969Yq8vLxIT0+PnJ2dadq0adSlSxdJf3Fx\nceTl5UX169enunXrUpcuXejGjRtERPT06VNyc3MjGxsbsrW1pb59+5KRkRGJRCIaNmwYDRo0iGbP\nni2xadOmTalFixakq6tL5ubmdOrUKcln3rx5cxE7XLx4kb788kvS19cnJycnunTpEhERpaSkkKur\nK+nr65NIJKJOnTpJTkaBgYFkbGxMOjo6ZGZmRhs3bpSqc86cOaSmpkY6Ojqkra1NhoaG1LZtW9LS\n0pJ8P6dMmUJqamqkqalJOjo6kiM0NFQZ/3YiIsrKyiJnZ2eyt7cna2trmj59utR2fH9HZdEphN87\nEVc50cHBgXr06CH19fLaUmHnX15n3rhx41LLPhZeI4iOjlb5GoEspSkjIyPJ29tbpbo+5/z58xQb\nG1ui8+fbjp8oS6cybRkYGEgjRoyQqW1KSgpdu3aNiIgyMjLIwsJCcN9NWXUK4ftJRPThwwci4tYG\nXVxc6MKFC0VeF4I9icrWKRR7rlixggYPHixVizy2VGmEb0BAADIyMiosKEwZyBK4BoD34KOOHTuW\nWhuBbzt+oiydQMXZMi4uDjdv3gQRISYmBlu2bEHv3r1lem+DBg0k2yx1dHRgbW2N58+fF2kjBJvK\nohPg//sJcPEFABdhLBaLYfDZXm4h2FMWnQD/9nz27BnCwsIwatQoqVrksaVKI3xFIhEASEQpLZun\nMgAAF0pJREFUGhSmDGQJXFNTU8Ply5dhb28PT0/PIoFGQoFvO8pKRdoyIyMDffr0gY6ODgYOHIip\nU6fCx8en3P0kJibi2rVrcHFxKfK80Gxakk6hfD8LCgrg4OAAIyMjdOrUCTY2NkVeF4o9y9IpBHtO\nmjQJy5YtKxIhXxh5bKlQJS9pA/79998ltlFTU4O2tjaePXsGIyOjEvv9/MxWnnKRiiLLWK1bt0ZS\nUhK0tLRw4sQJ9OrVCw8ePFCBuvLBpx1lpSJt6eTkhIcPHyqkJzMzE3379sWqVaugo1O8RKNQbFqa\nTqF8P9XV1XH9+nW8e/cOXbt2RVRUFNzc3Iq0EYI9y9LJtz2PHTsGQ0NDODo6lppyoty2VGQOav/+\n/TRq1CjJ4+3bt9P48eOLtOnRowddvHiRiLh9/gYGBvTvv/8SUdGgMBbkxQ52sIMd5T/MzMxkDqYt\njELTPrLU8C3cxsnJCRkZGRCLxcjNzcWePXskt+WPHj2S7NkW8jF37lzeNZR1hIQQjI3noqCAfy2V\n2ZZv3hAGDSLMni1snZXFnkSE99nvoe2ujdjnsbxrqez2/OnMT4hOisajR4/g4+MjSakSHR0NkUhU\n6uwKoOCc/6fb7MTExGLO/BOFRf3zzz8wNTXF0KFDiwWFMSqOIUO4cpj79/OtpHKzcCGgrw+UMM3K\nkAPd2rpwbeqKwNOBICK+5VRa7ry8gw3/boBFXQsA8gXTKjTnXzjCVywWw8/Pr4gz9/f3h6enJ8LC\nwmBubg5tbW2EhoaidevWRfrx9/fH999/r4gURiHU1QF3d2DGDKBnT6BWLb4VVT4ePwZCQoA7d4B1\n6/hWU7Vo3bA19r7bi5OPTqKbeTe+5VRKAk8HYkaHGaij+f876dasWVO+TkggCEhKqURGRvItQSYi\nIyOpe3eiX3/lW0nJCNmWAwYQLVjA/S1knYWpTDoP3jtIdr/bUb5YuDmGhGrPM4/PUPNfm1N2XjYR\nye87BVfAnVFx3L4NdOkCxMUB/+2yZchATAzQuzfw4AGgrc23mqoJEcH1T1f42vvCr7Uf33IqDQVU\nAKcNTpjWfhoG2A0AwFMB97dv38Ld3R0WFhbw8PBAupQqIklJSejUqRNsbW1hZ2eH1atXKzIkoxzY\n2QE+PsIvjSkkiICpU4EFC5jjVyZqampY7rEcc6Lm4EPuB77lVBpCb4WipkZN9Lftr3BfCjn/4OBg\nuLu748GDB+jSpQuCg4OLtalZsyZWrlyJO3fuIDo6GmvXri2xgAaj4lmwANi8GSiUSJNRCocOcZXQ\nRozgW0nVx9nYGR1NOmL55eV8S6kUZOVl4aezP2GFx4oKiYdQyPkXjt719fXFoUOHirWRNRydoRwa\nNgQCArjFX0bp5OYCgYFcLWSW8Vg1LO6yGKtjViMlI4VvKYLn1+hf8WXDL9HBpEOF9KfQnH+dOnWQ\nlpYGgJvDMzAwkDyWRmJiIlxdXXHnzp1iUYlszl95fPgAWFgABw4An2UCYBRi1SrgxAkgPJxvJdWL\nwIhAvM16i00+m/iWIlhefngJm7U2iB4VDXMD8yKvyes7y9zq6e7ujtTU1GLPL1q0qJiA0m5Fygqb\nB4B58+ZJ/nZzcysWCs6QD21tbs/65MnAxYuAALM88E5aGrBoEXD2LN9Kqh8zO86E5RpL3Ei9AfsG\n9nzLESRzI+diWKthMDcwR1RUVKlpHmRFoSt/KysrREVFoUGDBkhJSUGnTp1w//79Yu3y8vLQo0cP\ndO/eHRMnTpQuhF35KxWxGHByAmbOBPr141uN8Jg8mbtDYvGG/LA2Zi0O3j+IiGERgsxBxSe3X95G\n522dcX/8fRhoFs84ystuHx8fH2zbtg0AsG3bNvTq1atYGyKufJyNjU2Jjp+hfDQ0gF9+4ea0s7P5\nViMsHj7kAroWLOBbSfXF38kfzzOe49iDY3xLERREhCmnpmDW17OkOn5FO5ebN2/eUJcuXahFixbk\n7u5OaWlpRESUnJxMnp6eRER04cIFUlNTI3t7e0klnBMnThTrS0EpDBnp1Yvov9rhjP/w8SFasoRv\nFYywB2Fk8ZsF5eTn8C1FMByLO0aWv1lSbn5uiW3k9Z0syKua8egRt+h76xa3E6i6c/o04O8P3L0L\n1K7NtxpG953d4WHqgUlfTeJbCu/kinPRcl1L/OLxC7wsvEpsp/JpH1kCvD4hFovh6OgIb29veYdj\nVBBmZsB333Fz/9Wd/Hxg4kRg+XLm+IXCyq4rEXQxCC8/vORbCu+siVmD5qLm8GzhqZT+5Xb+sgR4\nfWLVqlWwsbFhCzkCYdYs4ORJLo1BdWbdOqBBA0DKUhWDJ6zqWWFoy6GYdXYW31J45eWHlwi6EISV\nXVcqzW/K7fxlCfACyq49yVA9enpcyoeAAKCggG81/PD6NfDzz9zefnZNIizmus3Fkbgj+Pf5v3xL\n4Y2ZZ2bC194X1vWtlTaG3M7/xYsXkmIBRkZGJRYLLqv2JIMfhg/nnN5/m7WqHTNnAoMGAba2fCth\nfI7oCxEWdV6EgBMBKKDqd3USkxyDsIdhmOM6R6njlOqR3d3d0bJly2LHkSNHirQrKcCrcO1JdtUv\nLNTVgTVruLQPpQRlV0muXgWOHgXmz+dbCaMkRjqOhJjECLkRwrcUlSIuEGN82Hgs7rIY+l/oK3Ws\nUiN8IyIiSnzNyMgIqampkgAvQ0PDYm0uX76MI0eOICwsDNnZ2Xj//j2GDx8uqez1OSzCV7U4OXGp\ni2fNAtau5VuNahCLgbFjgSVLWJprIaOupo61nmvRI7QHelr2LFK0pCqz+dpm1NKoheH2w0tsw3uE\nb2BgIOrWrYtp06YhODgY6enppS76njt3DsuXL8fRo0elC2FbPXnh7VvAxgY4fhz48ku+1SifdeuA\n0FDg/Hk2118ZGHt8LIgI63pU/XJqLz+8hN3vdogYFlGuNBcq3+o5ffp0REREwMLCAmfPnsX06dMB\nAM+fP4eXl/Q9qWy3j/AwMACCg4Hvv+euiqsyqanA3LncCYB9FSsHizovwqG4Q/j72d98S1E6P0b8\niKGthqosvxEL8mKACOjUCfj2W2DCBL7VKI/BgwETE+5kx6g8hN4KxZJLS/DP6H9QU6Mm33KUQmRC\nJHwP+eLuuLvQqSU98WVJ8JLbh1E1UFMD1q/nctskJfGtRjmcOAH8/TcwR7kbKBhKYJDdIDTQaYCV\n0Sv5lqIUsvKy4H/MH2s915bb8SuC0iN809PT0bdvX1hbW8PGxgbR0dFyi2UoDysr7qp/zBjuTqAq\nkZHBfa516wAtLb7VMMqLmpoa1nmtw9JLSxH/Np5vORXOz+d/hn0De3hbqjYDgtIjfH/44Qd4enri\n3r17uHnzJqytlRe0wFCM6dOBJ0+4BdGqxMyZgJsb4OHBtxKGvJjWMcWMDjMw6sioKrX3/1rKNWyK\n3YTfuv+m8rHlnvO3srLCuXPnJFs+3dzciuXyf/fuHRwdHfH48eOyhbA5f0Fw9SrQowdw8ybwXwxf\npeb8eS6Y69YtbnGbUXkRF4jRfkt7DLcfjrFtxvItR2Fyxblw3uiMyV9NLnVrZ1mofM5flgjfhIQE\n1K9fHyNHjkTr1q0xevRofPz4Ud4hGSqgTRvAz4/b/VPZz8WZmVwSu3XrmOOvCmioa2Brz62YEzkH\nj9PKvqAUOovOL0IT/SYY1moYL+OXGuSlaAnH/Px8xMbGYs2aNWjTpg0mTpyI4OBgLCihagYL8hIG\nc+dyJ4GQEOC/9E2Vkh9/BDp0AHx8+FbCqCis61tjRocZ8D3kiyjfKGioa/AtSS5ikmOw/t/1uO5/\nvdxb4CsqyEvuCiqWlpaUkpJCRETPnz8nS0vLYm1SUlKoWbNmkscXLlwgLy8vqf0pIIWhBK5fJ6pX\nj+jxY76VyMexY0RNmxKlp/OthFHR5IvzyXWrKy2+sJhvKXKRmZNJFr9Z0J7beyqkP3l9p9zTPrKU\ncGzQoAGaNGmCBw8eAABOnz4NW5ZJq1Jgb88tAA8ZwuW9r0ykpACjRnF3LvrKTY/C4AENdQ2E9A7B\nyuiVuJp8lW855WZi+ES0bdwW/W378ytE3rONLCUciYiuX79OTk5O1KpVK+rduzell3AppoAUhpIQ\ni4k8PIh++olvJbIjFhN98w3R7Nl8K2Eom3139pHZKjNKz6o8t3e7b+0m89Xm9D77fYX1Ka/vZBG+\njFJ58QJo3RrYurVybJVcuBA4dQo4exaoUeqKFqMqMObYGLzOeo29ffcKPn3MwzcP0W5LO4QPCceX\njSoukRaL8GUoBSMjbt//8OHA06d8qymd06eB338Hdu9mjr+6sLLbSjxOe4xVf6/iW0qpfMj9gL77\n+mK+2/wKdfyKoPQI38WLF8PW1hYtW7bE4MGDkZOTI7dYBj+4ugJTp3K5f7Ky+FYjnYQEYOhQ7kTV\nqBHfahiq4osaX2B/v/1YfHExohKj+JYjFSLC6KOjYW9kjzFOY/iWI0GpEb6JiYnYuHEjYmNjcevW\nLYjFYuzevVshwQx+mDIFsLDgFlKFNjuXkQH07Pn/kbyM6kXzOs2x89udGLh/oCD3/y+5tAQP3jzA\nHz3+ENTUlFJr+Orp6aFmzZr4+PEj8vPz8fHjRxgbG8uvlsEbamrApk3Aw4fCqoCVnw8MHAi0bcvV\nJGZUT74x/Qazvp6FHqE9kJYlnNJ0++/ux9qra3F44GFo1tTkW04RlBrha2BggClTpsDExASNGjWC\nSCTCN998I79aBq9oaXHlD0NCuBMB3xBxCdvy87lKZAK6qGLwwHjn8fAw80CvPb2QnZ/Ntxycf3Ie\nY4+PxdFBR2GsJ7yLXqVG+D569Ai//vorEhMToa+vj379+mHnzp0YMmSI1PFYhK/wMTICwsO5dYA6\ndYA+ffjRQcTFIVy/zu3sqVk107wzyskvXX/BkAND0H9ff/zV/y/e8v/HpsSi796+CO0TCocGDhXa\nd6WI8N29ezf5+flJHoeEhNDYsWOl9qeAFAYPXLtGZGhIdOiQ6scuKOD28dvZEb1+rfrxGcImJz+H\nvEO9qc+ePpSbn6vy8a+lXCOjZUZ04O4BlYwnr+9UaoSvlZUVoqOjkZWVBSLC6dOnYWNjI++QDAHh\n4ACEhQH/+x+wZ4/qxiUCpk0DDh4EzpwB6tZV3diMykEtjVrY128fsvOz0XdfX5VOAf397G903dEV\nazzXoLd1b5WNKxfynm1kjfBdsmQJ2djYkJ2dHQ0fPpxyc6WfiRWQwuCRGzeIjI2JVq7krsiVSU4O\nka8vkbMzu+JnlE1Ofg4N2DeAOm7pSK8/KP8LcyzuGNVbWo+Oxh1V+liFkdd3sghfhsIkJnI1ANq1\nA377Dahdu+LHePEC6NePW2cIDQW0tSt+DEbVo4AKMC1iGg7FHcLBAQdhZ2hX4WMQEZZfXo6V0Stx\nYMABtG3ctsLHKA2VR/ju27cPtra20NDQQGxsbIntwsPDYWVlhRYtWmDJkiXyDscQMM2aAZcvA2/e\ncCeAuLiK7T8igksx4ebGTfcwx8+QFXU1dSzzWIbZX89Gp22dsPHfjRV6kfnqwyv02tMLe+/uRfSo\naJU7foWQ91bj3r17FBcXR25ubvTvv/9KbZOfn09mZmaUkJBAubm5ZG9vT3fv3pXaVgEpKiUyMpJv\nCTLBh86CAqK1a4nq1iUKCiLKzi69fVkaX70i8vMjatyYKCKi4nSWF/Y/r1j40nn7xW1yWO9AXbd3\npYdvHpbZvjSdBQUFFHI9hIyWGdGPp36knPycClRaPuT1nXJf+VtZWcHCwqLUNjExMTA3N0ezZs1Q\ns2ZNDBw4EIcPH5Z3SEFQIVusVAAfOtXUgLFjuVKQV64A1tbAn38CubnS25ekMS2NS9Bmbc1d5d+5\nA/AZHsL+5xULXzptDW0RMyoGnZt3RttNbREQFoCn70pOWCVNZwEVIOxhGFw2uWDV36twZNARLHVf\niloatZSoXDkoNbFbcnIymjRpInncuHFjJCcnK3NIhgBo3hw4coTLBLpzJ9C0KZce4vx5oKTUTu/e\nce/x9QVMTblI4kuXgFWrAD091epnVF1qatREYPtA3B13F7Vr1IbDegf03N0TO27uQGpm8ZgmgKsd\nHJsSi5/P/QyrNVaYeWYmpnw1BTGjY+Bs7KziT1BxyBXkFRQUBG9v7zI7F1IeC4bqcXXljvv3gV27\ngMmTgbt3uTWChg25LKGRkUBSEreg27YtV3Jx6dKqUTyeIVwMtQ2x3GM55rrOxYF7B7D/7n4EnAiA\nZg1NmNYxhV5tPcTdiMOh9YcQ/zYeTfSboKtZV2zrtQ1tG7etGr5N0fmm0ub8r1y5Ql27dpU8DgoK\nouDgYKltzczMCAA72MEOdrCjHIeZmZlcvrtCsp5TCavnTk5OePjwIRITE9GoUSPs2bMHu3btkto2\nPj6+IqQwGAwGQwbknvM/ePAgmjRpgujoaHh5eaF79+4AgOfPn8PLywsAUKNGDaxZswZdu3aFjY0N\nBgwYAGtr64pRzmAwGAy5EUyQF4PBYDBUh8rLOMoS9DVhwgS0aNEC9vb2uHbtmooVlq0xKioK+vr6\ncHR0hKOjIxYuXKhyjd999x2MjIzQsmXLEtvwbUegbJ1CsCUAJCUloVOnTrC1tYWdnR1Wr14ttR3f\nNpVFpxBsmp2dDRcXFzg4OMDGxgYzZsyQ2o5ve8qiUwj2BACxWAxHR8cSN9uU25ZyrRTIiSxBX8eP\nH6fu3bsTEVF0dDS5uLioUqJMGiMjI8nb21uluj7n/PnzFBsbS3Z2dlJf59uOnyhLpxBsSUSUkpJC\n165dIyKijIwMsrCwENx3U1adQrHphw8fiIgoLy+PXFxc6MKFC0VeF4I9icrWKRR7rlixggYPHixV\nizy2VOmVvyxBX4UrhLm4uCA9PV1qoRg+NQIlL3Krio4dO6JOnTolvs63HT9Rlk6Af1sCQIMGDeDg\nwOVd19HRgbW1NZ4/f16kjRBsKotOQBg21dLSAgDk5uZCLBbDwMCgyOtCsKcsOgH+7fns2TOEhYVh\n1KhRUrXIY0uVOn9Zgr6ktXn27JmgNKqpqeHy5cuwt7eHp6cn7t69qzJ9ssK3HWVFiLZMTEzEtWvX\n4OLiUuR5odm0JJ1CsWlBQQEcHBxgZGSETp06FUvnLhR7lqVTCPacNGkSli1bBnV16S5bHluq1PnL\nGhjx+ZlNlQEVsozVunVrJCUl4caNGwgICJBay0AI8GlHWRGaLTMzM9G3b1+sWrUKOjo6xV4Xik1L\n0ykUm6qrq+P69et49uwZzp8/LzVdghDsWZZOvu157NgxGBoawtHRsdQ7kPLaUqXO39jYGElJSZLH\nSUlJaNy4caltnj17ptKi77Jo1NXVldwqdu/eHXl5eXj79q3KNMoC33aUFSHZMi8vD3369MHQoUOl\n/sCFYtOydArJpgCgr68PLy8v/PPPP0WeF4o9P1GSTr7tefnyZRw5cgTNmzfHoEGDcPbsWQwfPrxI\nG3lsqVLnXzjoKzc3F3v27IGPj0+RNj4+PggJCQEAREdHQyQSSQrFC0XjixcvJGfZmJgYEJHUeUI+\n4duOsiIUWxIR/Pz8YGNjg4kTJ0ptIwSbyqJTCDZ9/fo10tPTAQBZWVmIiIiAo6NjkTZCsKcsOvm2\nZ1BQEJKSkpCQkIDdu3ejc+fOErt9Qh5bVkiEr6wUDvoSi8Xw8/ODtbU1/vjjDwCAv78/PD09ERYW\nBnNzc2hra2Pr1q2qlCiTxv3792PdunWoUaMGtLS0sHv3bpVqBIBBgwbh3LlzeP36NZo0aYL58+cj\nLy9PopFvO8qqUwi2BIBLly5hx44daNWqleTHHxQUhKdPn0q0CsGmsugUgk1TUlLg6+uLgoICFBQU\nYNiwYejSpYugfuuy6hSCPQvzaTpHUVuyIC8Gg8Gohqg8yIvBYDAY/MOcP4PBYFRDmPNnMBiMaghz\n/gwGg1ENYc6fwWAwqiHM+TMYDEY1hDl/BoPBqIYw589gMBjVkP8DYQvKpBZyZSsAAAAASUVORK5C\nYII=\n",
"text": [
"<matplotlib.figure.Figure at 0x53d47f0>"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"example 1.3, Page No. 9"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Average, peak and rms current\n",
"\n",
"import math\n",
"#variable declaration(from the waveform)\n",
"Ip = 20.0 # Peak current\n",
"\n",
"#calculations\n",
"Iavg = (Ip*1.0)/3.0\n",
"Irms = math.sqrt((Ip**2)*1.0/3.0)\n",
"\n",
"#Result\n",
"print(\"Peak Current = %d A\\nAverage Current = %.3f A\\nrms Current = %.3f A\"%(Ip,Iavg,Irms))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Peak Current = 20 A\n",
"Average Current = 6.667 A\n",
"rms Current = 11.547 A\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"example 1.4, Page No. 18"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#power BJT\n",
"\n",
"import math\n",
"# variable declaration\n",
"Vcc =220.0 # collector voltage\n",
"Vce_sat = 1.0 # Vce saturation voltage\n",
"Rb =6.0 # base resisror\n",
"Rl = 8.0 # load resisotr\n",
"hfe = 15.0 # gain\n",
"Vbe = 0.7 # base-emiter voltage drop\n",
"\n",
"#calculations\n",
"#(a)\n",
"Ic = (Vcc-Vce_sat)/Rl\n",
"Ib=Ic/hfe\n",
"#(b)\n",
"Vbb= Ib*Rb+Vbe\n",
"#(c)\n",
"Pc = Ic*Vce_sat\n",
"Pb = Ib*Vbe\n",
"Pt = Pc+Pb\n",
"\n",
"#Result\n",
"print(\"(a) Base current, Ib = %.3f A\\n(b) Vbb = %.2f V\\n(c) Total power dissipation in BJT = %.4f W\"%(Ib,Vbb,Pt))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a) Base current, Ib = 1.825 A\n",
"(b) Vbb = 11.65 V\n",
"(c) Total power dissipation in BJT = 28.6525 W\n"
]
}
],
"prompt_number": 20
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"example 1.5, Page No. 18"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Load current and losses in BJT\n",
"\n",
"import math\n",
"# variable declaration(with reference to example 1.4)\n",
"Vbb_org = 11.65 # original Vbb\n",
"fall =0.85 # 85% fall in original value\n",
"Vce_sat = 1.0 # Vce saturation voltage\n",
"Rb =6.0 # base resisror\n",
"hfe = 15.0 # gain\n",
"Vbe = 0.7 # base-emiter voltage drop\n",
"\n",
"\n",
"#calculations\n",
"Vbb = fall* Vbb_org\n",
"Ib = (Vbb-Vbe)/Rb\n",
"Ic = Ib*hfe\n",
"Pc =Ic*Vce_sat\n",
"Pb = Ib* Vbe\n",
"Pt = Pc+Pb\n",
"\n",
"#Result\n",
"print(\"Load current = %.3f A\\nLosses in BJT = %.2f W\"%(Ib,Pt))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Load current = 1.534 A\n",
"Losses in BJT = 24.08 W\n"
]
}
],
"prompt_number": 23
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"example 1.6, Page No. 19"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Power loss in BJT\n",
"\n",
"import math\n",
"#variable declaration(with reference to example 1.4)\n",
"Vcc = 240 # New value of collector current\n",
"Ic = 27.375 # collector current,from example 1.4\n",
"Pb = 1.2775 # base power dissipation,from example 1.4\n",
"Rl = 8.0 # load resisotr\n",
"\n",
"#Calculations\n",
"Vce = Vcc-(Ic*Rl)\n",
"Pc = Vce* Ic\n",
"Pt = Pb+ Pc\n",
"\n",
"#result\n",
"print(\"Total power dissipation = %.4f W\"%Pt)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Total power dissipation = 576.1525 W\n"
]
}
],
"prompt_number": 31
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"example 1.7, Page No. 19"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# BJT switching frequency\n",
"\n",
"import math\n",
"from scipy.integrate import quad\n",
"# variable declaration\n",
"I = 80 # maximum current, from swiching characteristics\n",
"t1 = 40 *10**-6 # rise time, from swiching characteristics\n",
"t2 = 60* 10**-6 # falll time, from swiching characteristics\n",
"V = 200 # collector-emitter voltage\n",
"Pavg =250 # average power loss\n",
"\n",
"\n",
"#calculations\n",
"# switching ON\n",
"ic = I/t1\n",
"def f(x):\n",
" return (ic*x)*(V-(V/t1)*x)\n",
"t_lower =0\n",
"t_upper = t1\n",
"val_on = quad(f,t_lower,t_upper)\n",
"\n",
"# switching OFF\n",
"ic = I-I/t1\n",
"Vc = V/t2\n",
"def f1(x):\n",
" return (I-(I/t2)*x)*(Vc*x)\n",
"t_lower =0\n",
"t_upper = t2\n",
"val_off = quad(f1,t_lower,t_upper)\n",
"\n",
"loss= val_on[0]+val_off[0]\n",
"loss= math.floor(loss*10000)/10000\n",
"f =Pavg/loss\n",
"\n",
"# Result\n",
"#print(\"(a) Switching ON:\\nEnergy losses during switching on = %.4f J\"%(val_on[0]))\n",
"#print(\"\\n(b)Switching OFF\\nEnergy losses during switching off of BJT =%.2f J\"%(val_off[0]))\n",
"print(\"\\nSwitching frequency = %.1f Hz\"%f)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"Switching frequency = 937.7 Hz\n"
]
}
],
"prompt_number": 53
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"example 1.8, Page No. 20"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Turn ON loss of power transistor\n",
"\n",
"import math\n",
"#variable declaration\n",
"Vmax = 300 # voltage during start\n",
"Imax = 200 # full current after start\n",
"t = 1* 10**-6 # starting time \n",
"\n",
"#calculation\n",
"E_loss = Vmax*Imax*t/6 #formula\n",
"\n",
"#Result\n",
"print(\"Energy loss = %.2f Joules\"%E_loss)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Energy loss = 0.01 Joules\n",
"\n"
]
}
],
"prompt_number": 54
}
],
"metadata": {}
}
]
}
|