1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter13 Irreversible Process In Liquids"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 13.1,Page no.51"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"number of grams of copper deposited at cathode= 0.0198 gram\n",
"volume of oxygen liberated at anode= 0.0039 lit\n"
]
}
],
"source": [
"import math\n",
"#initialisation of variables\n",
"t=10.0 #min\n",
"i=0.1 #amp\n",
"M=63.54 #gm moleˆ−1\n",
"n=2.0\n",
"F=96500 #amp−sec equivˆ−1\n",
"Mo=32.0 #g moleˆ−1\n",
"T=25.0 #C\n",
"R=0.08205 #l−atm degˆ−1 moleˆ−1 \n",
"p=740.0\n",
"n1=4.0\n",
"#CALCULATIONS\n",
"m=t*60*i*M/(F*n)\n",
"V=t*60*i*Mo*R*(273+T)*760/(F*n1*Mo*p)\n",
"#RESULTS\n",
"m=round(m,4)\n",
"V=round(V,4)\n",
"print 'number of grams of copper deposited at cathode=',m,'gram'\n",
"print 'volume of oxygen liberated at anode=',V,'lit' "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 13.2,Page no.52"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"cell constant= 0.2281 cmˆ−1\n",
"specific conductance= 0.0007 ohmˆ−1 cmˆ−1\n"
]
}
],
"source": [
"import math\n",
"#initialisation of variables\n",
"r=82.4 #ohms\n",
"k= 0.002768 #ohmˆ−1\n",
"R1= 326 #ohm\n",
"#CALCULATIONS\n",
"K= r*k\n",
"K1= (K/R1)\n",
"#RESULTS \n",
"K=round(K,4)\n",
"K1=round(K1,4)\n",
"print 'cell constant=',K,'cmˆ−1'\n",
"print 'specific conductance=',K1,'ohmˆ−1 cmˆ−1'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 13.3,Page no.52"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"equivalent conductance= 139.94 cmˆ2 equivˆ−1 ohmˆ−1\n"
]
}
],
"source": [
"import math\n",
"#initialisation of variables\n",
"C= 0.005 #N \n",
"k= 6.997*10** -4 #ohmˆ−1 cmˆ−1 \n",
"#CALCULATIONS \n",
"A= 1000*k/C \n",
"#RESULTS\n",
"print 'equivalent conductance=',A,'cmˆ2 equivˆ−1 ohmˆ−1'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 13.4,Page no.52"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"equivalent conductance of acetic acid= 390.6 cmˆ2 equivˆ−1 ohmˆ−1\n"
]
}
],
"source": [
"import math\n",
"#initialisation of variables\n",
"AHcl= 426.1 #cmˆ2 equivˆ−1 ohmˆ−1 \n",
"ANaC2H3O2= 91 #cmˆ2 equivˆ−1 ohmˆ−1 \n",
"ANaCl= 126.5 #cmˆ2 equivˆ−1 ohmˆ−1 \n",
"#CALCULATIONS \n",
"AHC2H3O2= AHcl+ANaC2H3O2 -ANaCl \n",
"#RESULTS\n",
"print 'equivalent conductance of acetic acid=',AHC2H3O2,'cmˆ2 equivˆ−1 ohmˆ−1'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 13.5,Page no.53"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"ionisation constant= 0.0000178\n"
]
}
],
"source": [
"import math\n",
"#initialisation of variables\n",
"Ke=48.15 \n",
"Ki=390.6 \n",
"c=0.001028 #N \n",
"#CALCULATIONS \n",
"a=Ke/Ki\n",
"K=a**2*c/(1-a) \n",
"#RESULTS\n",
"K=format(K, '.7f')\n",
"print 'ionisation constant=',K"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 13.6,Page no.53"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"electrical field strength= 0.082 volts cmˆ−1\n",
"mobility of potassium ion= 0.0007 cmˆ2 volt ˆ−1 cmˆ−1\n"
]
}
],
"source": [
"import math\n",
"#initialisation of variables\n",
"i=0.00521 #amp\n",
"A=0.23 #cmˆ2\n",
"k=0.0129 #ohmˆ−1 cmˆ−1\n",
"t=67 #min\n",
"l=4.64 #cm\n",
"#CALCULATIONS\n",
"r=i/(A*k) \n",
"uK=l/(t*60*r) \n",
"#RESULTS\n",
"r=round(R,4)\n",
"uK=round(uK,4)\n",
"print 'electrical field strength=',r,'volts cmˆ−1'\n",
"print 'mobility of potassium ion=',uK,'cmˆ2 volt ˆ−1 cmˆ−1'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 13.7,Page no.54"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"specific conductance of sodium chloride= 0.0107 ohmˆ−1 cmˆ−1\n"
]
}
],
"source": [
"import math\n",
"#initialisation of variables\n",
"C=0.1 #N \n",
"F=96500 # coloumbs \n",
"mna=42.6*10** -5 #cmˆ2 volt secˆ−1 \n",
"mcl=68*10**-5 # cmˆ2 c o l t secˆ−1 \n",
"#CALCULATIONS \n",
"k=F*(mna+mcl)*C/1000 \n",
"#RESULTS\n",
"k=round(k,4)\n",
"print 'specific conductance of sodium chloride=',k,' ohmˆ−1 cmˆ−1'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 13.8,Page no.54"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"transference number of chlorine= 0.51\n"
]
}
],
"source": [
"import math\n",
"#initialisation of variables\n",
"V=4.9 #faradayˆ−1 \n",
"c=0.1 #N \n",
"#CALCULATIONS \n",
"TK=V*c \n",
"Tcl=1-TK \n",
"#RESULTS\n",
"print 'transference number of chlorine=',Tcl"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 13.9,Page no.55"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"copper transference number= 0.72\n"
]
}
],
"source": [
"import math\n",
"#initialisation of variables\n",
"Mc=63.54 #gms\n",
"n=2.0\n",
"mc=0.3 #gms\n",
"mc1=1.43\n",
"mc2=1.2140\n",
"#CALCULATIONS\n",
"Me=Mc/n \n",
"Tc=((mc/Me)-((mc1 -mc2)/Me))/(mc/Me)\n",
"Ta=1-Tc\n",
"#RESULTS\n",
"print 'copper transference number=',Ta"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 13.10,Page no.55"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"A0 for acetic acid= 390.352\n"
]
}
],
"source": [
"import math\n",
"#initialisation of variables\n",
"Tn=0.820\n",
"Tn1=0.450\n",
"A=426.1\n",
"A1=91\n",
"#CALCULATIONS\n",
"l=Tn*A\n",
"l1=Tn1*A1 \n",
"L=l+l1 \n",
"#RESULTS \n",
"print 'A0 for acetic acid=',L"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 13.11,Page no.56"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"limiting diffusion cooeficient= 0.00001979 cmˆ2 secˆ−1\n"
]
}
],
"source": [
"import math\n",
"#initialisation of variables\n",
"T=25.0 #C\n",
"n=2.0\n",
"F=96500.0 # coloumbs\n",
"R=8.316 #J moleˆ−1 Kˆ−1\n",
"a=76.2*10 -5\n",
"a1=79*10**-5\n",
"A=155.2*10** -5 \n",
"#CALCULATIONS \n",
"D0=n*a*a1*R*(273+T)*10**-6/(F*A)\n",
"#RESULTS\n",
"print 'limiting diffusion cooeficient=',format(D0, '.8f'),'cmˆ2 secˆ−1'"
]
}
],
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
"display_name": "Python [Root]",
"language": "python",
"name": "Python [Root]"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|