1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
|
{
"metadata": {
"name": "",
"signature": "sha256:36c911cea36773d62dbfdfd257319508866d11b39912270afd0ba3c55a7245e6"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chepter 5: Power launching and coupling"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.1, Page Number: 192"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#variable declartion\n",
"phi = 0 #lateral coordinate(degree)\n",
"Half_power = 10 #half power beam width(degree)\n",
"\n",
"#calculation\n",
"teta = Half_power/2\n",
"teta_rad = teta/57.3\n",
"L = math.log(0.5)/math.log(math.cos(teta_rad)) #power distribution co-efficient\n",
"\n",
"#result\n",
"print \"Power distribution co-efficient L = \" ,round(L)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Power distribution co-efficient L = 182.0\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.2, Page Number: 194"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#variable declartion\n",
"rs = 35.0*1e-6 #the source radius (meter)\n",
"a = 25.0*1e-6 #the core radius of stepindex fiber (meter)\n",
"NA = 0.20 #the numerical aperture value\n",
"Bo = 150.0*1e4 #radiance ( W/cm^2 * sr)\n",
"\n",
"#calculation\n",
"Ps = ((math.pi**2)*(rs**2))*Bo #power emitted by the source\n",
"PLED_step = Ps*(NA**2) #for larger core fiber(W)\n",
"PLED_step1 = (((a/rs)**2)*Ps)*(NA**2) #for smaller core fiber at the end face(W)\n",
"\n",
"#result\n",
"print \"For larger core fiber optical power emitted from the LED light source = \" , round(PLED_step*1e3,3),\"mW\"\n",
"print \"For smaller core fiber then area optical power coupled to step index fiber on W = \" , round(PLED_step1*1e3,3),\"mW\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"For larger core fiber optical power emitted from the LED light source = 0.725 mW\n",
"For smaller core fiber then area optical power coupled to step index fiber on W = 0.37 mW\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.3, Page Number: 194"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#variable declartion\n",
"n1 = 3.6 #refractive index of optical source\n",
"n = 1.48 #refractive index of silica fiber\n",
"\n",
"#calculation\n",
"R = ((n1-n)/(n1+n))**2 #fresnel reflection\n",
"L = -10*(math.log10(1-R)) #power loss(dB)\n",
"\n",
"#result\n",
"print\"Fresnel reflection = \",round(R,3),\" = \",round(R*100,1),\"%\"\n",
"print\"Power loss = \" , round(L,2),\"dB\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Fresnel reflection = 0.174 = 17.4 %\n",
"Power loss = 0.83 dB\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.4, Page Number: 205"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#variable declartion\n",
"a =1*1e-6 #core radii (meters)\n",
"d = 0.3*a #axial offset\n",
"\n",
"#calculation\n",
"PT_P = (2/math.pi)*(math.acos(d/(2*a))-(1-(d/(2*a))**2)**0.5*(d/(6*a))*(5-0.5*(d/a)**2)) \n",
"PT_P_dB = 10*(math.log10(PT_P)) #power coupled between two fibers(dB)\n",
"\n",
"#result\n",
"print \"Power coupled between two graded index fibers = \" , round(PT_P_dB,2),\"dB\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Power coupled between two graded index fibers = -1.26 dB\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.5, Page Number: 211"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#variable declartion\n",
"V = 2.4 #normalized frequency\n",
"n1 = 1.47 #core refractive index\n",
"n2 = 1.465 #cladding refractive index\n",
"a = (9.0/2.0)*10**-6 #core radii (meters)\n",
"d = 1*10**-6 #lateral offset (meters)\n",
"\n",
"#calculation\n",
"W = a*(0.65+1.619*V**(-1.5)+2.879*V**-6) #mode field diameter (um)\n",
"Lsm = -10*(math.log10(math.exp(-(d/W)**2))) #Loss between identical fibers(dB)\n",
"\n",
"#result\n",
"print \"Mode field diameter = \" , round(W*1e6,2),\"um\"\n",
"print \"Loss between single mode fibers due to lateral misalignment = \" , round(Lsm,2),\"dB\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Mode field diameter = 4.95 um\n",
"Loss between single mode fibers due to lateral misalignment = 0.18 dB\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.6, Page Number: 212"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#variable declartion\n",
"V = 2.4 #normalized frequency\n",
"n1 = 1.47 #core refractive index\n",
"n2 = 1.465 #cladding refractive index\n",
"a = (9.0/2.0)*1e-6 #coreradii in meters\n",
"d = 1*1e-6 #lateral offset (m)\n",
"teta = 1 #in (degrees)\n",
"teta = 1/57.3 #in (radaians) \n",
"\n",
"#calculation\n",
"W = a*(0.65+1.619*V**(-1.5)+2.879*V**-6) #mode field diameter\n",
"Lam_bda = 1300.0*10**-9 #wavelength (m)\n",
"Lsm_ang = -10*(math.log10(math.exp(-(math.pi*n2*W*teta/Lam_bda)**2))) #(dB)\n",
"\n",
"#result\n",
"print \"Loss between single mode fibers due to angular misalignment = \",round(Lsm_ang,2),\"dB\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Loss between single mode fibers due to angular misalignment = 0.41 dB\n"
]
}
],
"prompt_number": 3
}
],
"metadata": {}
}
]
}
|