1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
|
{
"metadata": {
"name": "",
"signature": "sha256:a2081322aeeec1f784d913a531d652947d3374639d5b34917181cf0739e34394"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 13: Optical networks"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 13.1, Page Number: 464"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"import numpy as np\n",
"\n",
"#variable declaration\n",
"N=np.array([5,10,50]) #number of station\n",
"alpha = 0.4 #attanuation (dB/km)\n",
"L_tap = 10 #coupling loss (dB)\n",
"L_thru = 0.9 #coupler throughput(dB)\n",
"Li = 0.5 #intrinsic coupler loss(dB)\n",
"Lc = 1.0 #coupler to fiber loss(dB)\n",
"L = 0.5 #link length(km)\n",
"\n",
"#calculation\n",
"fiber_Loss = alpha *L #fiber loss(dB)\n",
"Pbudget = N*(alpha*L+2*Lc+Li+ L_thru)-alpha*L-2*L_thru +2* L_tap #power budget(dB)\n",
"\n",
"#result\n",
"print \"Fiber loss at 500m =\",fiber_Loss,\"dB\"\n",
"print \"Power budget of three stations 5, 10, 50 respectively = \",Pbudget[0],\"dB\",Pbudget[1],\"dB\",Pbudget[2],\"dB\" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Fiber loss at 500m = 0.2 dB\n",
"Power budget of three stations 5, 10, 50 respectively = 36.0 dB 54.0 dB 198.0 dB\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 13.2, Page Number: 465"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import scipy as sp\n",
"from scipy import special\n",
"\n",
"%matplotlib inline\n",
"\n",
"#variable declaration\n",
"alpha = 0.4 #attanuation (dB/km)\n",
"L_tap = 10 #coupling loss (dB)\n",
"L_thru = 0.9 #coupler throughput(dB)\n",
"Li = 0.5 #intrinsic coupler loss(dB)\n",
"Lc = 1.0 #coupler to fiber loss(dB)\n",
"L = 0.5 #link length(km)\n",
"Pbudget_LED = 38 #power loss of LED\n",
"Pbudget_LASER = 51 #power loss of LASER\n",
"\n",
"#calculation\n",
"N_LED = (Pbudget_LED + alpha*L-2*L_thru-2*L_tap)/(alpha*L+2*Lc+Li+L_thru)\n",
"N_LASER = (Pbudget_LASER + alpha*L-2*L_thru-2*L_tap)/(alpha*L+2*Lc+Li+L_thru)\n",
"\n",
"#result\n",
"print \"Number of stations allowed for given loss of 38 dB with LED source =\",round(N_LED,0)\n",
"print \"Number of stations allowed for given loss of 51 dB with LASER source =\",round(N_LASER,0)\n",
"\n",
"#plot\n",
"x1=arange(0.0, 50.0, 10.0)\n",
"Pbudget1 = x1*(alpha*L+2*Lc+Li+ L_thru)-alpha*L-2*L_thru +2* L_tap\n",
"plot(x1,Pbudget1)\n",
"title('Plot of total power loss as a function of number attached station for linear bus')\n",
"ylabel('Power loss between station 1 and N(dB)')\n",
"xlabel('Number of stations')\n",
"text(30,120,'Linear bus')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Number of stations allowed for given loss of 38 dB with LED source = 5.0\n",
"Number of stations allowed for given loss of 51 dB with LASER source = 8.0\n"
]
},
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 4,
"text": [
"<matplotlib.text.Text at 0xa859828>"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAeYAAAEZCAYAAABCV4YDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcHFW5//HPl7CvAdnDLgZEAwQwIOuwmqtsXi+LcpFV\nUVRUQElEIShqgqDcCxevQSCAEpBV4HdFFjMQ1kBEAgYIIBFIICwJIEYgJM/vj3Mm6XS6Z3omk+mq\nme/79ZrXdFVXVT9dXV1Pn1Pn1FFEYGZmZsWwVLMDMDMzswWcmM3MzArEidnMzKxAnJjNzMwKxInZ\nzMysQJyYzczMCmSxErOkVknHdVcwHbzWVyXNkPS2pNV74jWrXn+qpL17+nW7i6Qxkn7U7DiWpGYd\nI5KGS7q4p16v4nU/K+lFSf+QtE1Pv35VLPMkbdbMGJYESZvk99YthZhmnUck7SbpqSW07W49Divz\niqQjJP1x8aNcfD15Du3wYMsH0uy801+RdJmklfLTkf862sZiHdySlgHOA/aOiFUjYtbibL+L8TT0\nXgus7PG3q6NjpBtfp0XSi5XzIuKnEfGlJfF6HTgXODEiVomIx5rw+oVQ64SZz1t7NSumdnT6e1jr\nmGtgnYV+KEXE+IjYsjPb6ITuPg7n76OI+G1EfKobttkdeuwc2khiCmD/iFgF2A7YAfh+F19PXVxv\nXWB54Mlu3n5X4yk0Sf3qPdWjgfSsRo+RXkGSgI2Ayc2OpTtJWrqbNhX07uO9EUv8/S/ucdhdNRHd\nrdnn0E7tlIiYDtwGfKz6OSXfz79UZ0i6XNKq+el78v83c8l7xxrrLyfpfEnT8t8vJC0raSALTrZv\nSrqzRmiLbL+z8Uj6sKQ/SXpd0muSfiNptUb2S/7F/r+Sbs/VqK2SNqp4fmdJD0t6U9IESZ/M8/eU\nNKliuTskTaiYHi/pwPx4fUnXS3pV0t8kfaNiuRGSrpN0paS3gKMaiPlLkp6R9Iak30tar+K5X+R9\n9pakSZI+lud/WtJf83t8SdIpdbbd7r6UdFpe/21JT9Ur2Uj6jKRHcxwvSDqzznKLHCOSNq6uFdHC\nVWRHS7pX0s8kzcz7dGjFsmso1Q5Ny8/fIGlF4A/A+vm4eVvSenn/X1mx7oF5P82SNE7SlhXPTZV0\niqTH8vFwtaTl6ryvmsdwXv4fQD/gMUnP1Fl/nqQTJE3JsVxY8Vx1zAvVIuV99SNJ9+X3erOkD0n6\nbf48JkjauOolPyPpufyZnyNJFds/VtLkvC9v08Lfj3mSTszv4+k67+VaSS/nfXa3pK3y/C8DXwC+\nWxHnFaRkcUued2p728jPrSDpvLyv31T67lV+Lv8p6e/5vX2v6jMaJunZfLxfo4rLKJKOzOu9Xrle\nnfdY/f06uc4xt66kIZIeyJ/rdEkXKNUaIant/PZYXucQVZW6JX00f8azJD0h6YCK58ZI+h9Jt+bX\ne1A1LlPUOw4b2PYvJf2fpHeAlg72ydGSxldM1z2m8/PtHWf/pXQeeUvSI5J2rXiu0XPomqpxnleN\nWlgtfL7ZPB9zb+Zj6Or23jcR0e4f8DypehBgQ+AJ4Kw8PQ44Nj8+FngG2ARYCbgeuCI/tzEwD1iq\nndf5IXA/sGb+uw/4YSPr13q+s/EAHwb2BpbJr3838Iuq/bBXndcfA7wN7AosC5wPjM/PrQHMAo4g\n/RA6HJgJrA6sAPwrL7MMMAN4Mce7AjA7L7cUMJFUU7E0sCnwHLBffo0RwPvAgXl6+RoxXgb8KD/e\nC3gN2DbH+9/A3fm5TwGPAKvm6S2AdfPjl4Fd8uPVgMF19kfdfZm390LFNjcCNquznT2Aj+XHg4BX\ngIMaOQby5179GVcer0fnfXYc6VfwV4BpFcv+P2Bsfp9LA7tVxPRi1WufCVyZHw8E3snvvx/wHdJx\nuHTFcfQgqYS/OqmkcUKd91T3GM7Pz6u37yqevxlYlfTdfRX4VHXMtfYX0ApMIR1rqwJ/JSXNvfL7\nuhy4tOq17gL659d6GjguP3dQfh9bkI7l04H7qtb9Y153uTrv5ei8D5YBfgE8WnVs/7DGeWuvTmzj\nf4A/AevlGHcifTfa9suvgOWArYF3gS3yet8knbfWz9v9X+Cq/NxWpMTVdl44D5hTHVdFDDW/X9Q+\n5rYDhuRYN87H0TfrHRukBPhifrwM8CwwjHRs70k6fw2sOJ+9Tqod7Qf8BhjbwXG2WSe2/SbwyTy9\nyOfNot/T8Q0e0x0dZ0ew4Hx6ct7fy3biHDqG+uf5tuOk3vlmLDA8P14W2Lne/oyIhhLz1HxwzcqP\nL2zbmVUvfBfwlYr1BuY3ulStoGu8zrPA0Irp/YDn673pqnVr7ZTFjedg4M/tfdGrPrCrKqZXAj4A\nNgCOBB6sWv5+4Kj8+B7gs6QTwR+Bq0nJcU/gsbzMjsDfq7YxnHxizAdVawef4/yTF3AJMLIq3vdJ\nSXJP0kl1x+r9A/wd+DI5aTf6V7kvgc1JP0D2Bpbp5HbOB37eyDFQ55io/sI/U/Hcinn5tUkn57nA\najVep4VFT5IjWJCYfwBcXfGcgJeA3SuOoy9UPD8K+GWd91T3GM7TjSTmnSumrwFOq465zv4bRz6R\n5Olzgf9XMb0/Cye2eeQfinn6q8Cd+fEf2vZ7nl4K+CewYcW6LZ04DvrndVapOLZ/VLVM3e9r9TZy\nPLOBQe0cV+tXzHsIODQ/frLydfKx8z4poZ3BwueFFYH36sVFne9XrWOuxrrfAm6o+jzqJebdgJer\n1r8KODM/HgOMrnju34AnOzjONuvEtsd08F46SszVx/R3GznOarzOzLbPnMbOoWOofZ4fQMfnm8tJ\nP+4GNHKMN3qN+aCIWD0iNomIr0fEezWWW490YLV5gfSLaZ0GXgPSL87q9ddvcN1aOhWPpHWUqhVf\nylUZVwIfavC1gnTyTRMR/yR96OvnOF6oWv7vLHhvd5O+NLvlx3eTfiHvTiq1QPpFvH6uupklaRYp\nMa9dsc2XaNxC+ybH+wbpoBlH+vH1P8AMSb+StEpe9HPAp4GpuZpmp1obb29fRsSzpJPIiLz9saqo\nRq/azo5KVcGvSnoTOIHGP5NGvNL2ICJm54crk36Jz4yIt7qwzfWp+LwjfStfJH15F3ldUo3JynW2\ntbjfqerXmk06mTRqRsXjd0mlk8rp6rgrGyhVfn83Bv6r4th9I88fUGfdhUhaStLIXF38FinpQqqN\naUgH21iT1D7huXY2Ub0f2977xsCNFe9tMulkvQ7p86s8L8xmwXuvpaHvV34/A3NV88v5/fyYxr8b\n67Po/q48JwULf/btHaNd2XanGrLV0N5nUfc4k3RqruZ+Mz+/GgsfQx2dQ9s7z3fku6Qf6RNy9f4x\n7S3cnRfep5N+NbTZiHSAzqCxlmy11p/e4GvX2n5n4/kJqZT08YhYjVTSbXT/iHQyTxPSyqTq6Wk5\njo2rlt84PwcpEe/JgkTclqj3yI8hHcjP5x9HbX+rRsT++fmo857qWWjfKLWy/1BbTBFxQUTsQKqK\nG0iqjiUiHomIg4G1gJuA39XZfrv7MiLGRsRueT8EqdRYy1X5dTaIiP6kasJGP5N/5v8rVsxbt8F1\nXwTWUO02Bh3t52lUfN6S2o6NaXWWb2977R3Di+ufdG7fNHJ8bVT1uO09vwB8uer4XSkiHmxw+0cA\nB5Iuqa1Gql6HBQ1xaq1bPa+9bbxO+qGxeTsx1PMCqaav8r2tGKk9zsssfF5YkXaSZzvfr1rv75ek\nHwGb5/dzOo1/N6YDG+Zjs03lOWlxLMltd6TucSZpN9J57JCI6B8RqwNvsXBjrkaO8Vrn+el0cL6J\niBkR8eWIGEAqYFxU67p9m+5MzGOBb+eL4CuTTs5XR8Q80vXMeaRrj+2t/31Ja0pak1QNdGU7y1eq\ntf3OxrMyaee+LWkAORl1wqcl7SJpWeBHwAMRMY1UvTJQ0uclLS3pMGBL4Na83v2kayKfACZExGTS\ngbwjCxqpPQT8Q9J3lRqp9JP0cUk75OcbaSmoiuXGAsdI2iY34PgJqbr9BUk75JLqMqRfo+8CcyUt\no9SncLWImEu6vDG3zmvV3Zf5l/5e+XXfa9t+O9uZFRHvSxpCauTT0A+QiHiNdDI4Mu+vY2n/+Ktc\n92XS53aRpP75ve+en54BfEgLGhJWu5bUCGqvvA9Pye/x/jrLt/fZtXcMd0XlMfAXYHdJG+YfIMM7\niK2RY+zUvL82BE4iVTNC+kH1PS1osLWapEM6EffKpGNlZv4R+ZOq52cA1Se5GSz6/a65jbw/LwV+\nrtSYr5+kT+bvckf+F/hJRSOgtZQbbALXAftXnBd+SJ1zbgffr1rH3Mp5mdlKjQu/2sH7r/QQ6bv9\n3fy6LaRLE20Nkhan5fGDS3DbtVQe0+0dZ6uQftS+rtSo+AzSderOvlbN83xH5xulBngb5Mk3Seex\nut/j7kzMl5IS6T3A30gfzjdgfhXOj4H7cjXDkBrrn01qdDQp/z2S57Wpe0Kus/1G45mZlz+L1KDi\nLeAWUkObRkuhQb6OQqo+GQz8Z36tN0gH5imkX+ankrqfzayIZSLw14j4IG/vfmBqRLyel5mXt7Ft\nfi+vAaNZcGA1UmKev0xE3EW6Fno96dfepqRGaeRtjiZV0UzNMf8sP/efwPO56uzLpFJILe3ty+WA\nn+b38DKpKqlWUgA4EfihpLdzvNfUWa7yPVb6EulHweuk0v99VctWL185fSSpoc5TpJPcSQAR8RQp\nYf4tHzvrsfC+fZq0ny7I7/EzwAEVn22tmOt9dnWP4Trvt9a2a75WRNxB2p+TgIdJn1N7+6Oj/QXw\ne9Kx/Cjph+el+bVuItWKXJ2PncdJ7SgafR9XkKpDp5Eanz5Qtc4lwFb5u39DnvdT0g/9WZJObmAb\np+a4HiZ9h39K+yXyNv9Faox0ez5OHyA1yiL/yP4a6dwwnfSdaq8at+b3q8Yxt26O9wukxkijSYmv\nMs4RwOX5/f8HC3/27wMHkK4dv0a6dHVkREypeL8dfdY1n4uIOV3Ydnuql2/vmG7vOLst/00hndf+\nxcKXGBs9h/6WGuf5rL3zzQ7Ag5L+QfqenBQRU+u9kPKF6V5J0qWkE+OrETEoz9uW9MtqOdIvqBMj\n4uH83HBSS9i5pB13e4OvcxnwUkT8oPvfhZmZ9SWF7NzdjS4DhlbNO4fUQnAwqbr8HIBc/XEY6ZfO\nUFI1ZmeuMZuZmS22Xp2YI2I8qZtXpXmk1niQuky0NUo4iNRXb06uYniWXCXVyEvRi293aWZmPae7\nbn9XJt8C/ijpXNIPk0/m+euTGi60eYmFu3PUFRHtNn03MzNrVK8uMddxIvCtiNgI+Da5gUodLgWb\nmVmP6osl5i9GxEn58XXAr/PjaVT0USPdtWuRvneSnKzNzLogItwepwF9scQ8XdIe+fFepObzkLo8\nHJ77uG0KfASYUGsDjdxSrdl/Z555ZtNj6C1xliFGx+k4i/5njevVJWZJY0l30FpTaWSVM0h9zf5L\naXi5f5H6CxIRkyX9jgW31DsxfDSZmVkP69WJOSI+X+epHWrNjIifsOhdhczMzHpMX6zK7hNaWlqa\nHUJDyhBnGWIEx9ndHKc1S6++89eSIMk13GZmnSSJcOOvhrjEbGZmViBOzGZmZgXixGxmZlYgTsxm\nZmYF4sRsZmZWIE7MZmZmBeLEbGZmViClufOXpHWAXUjDM84GngAeiYh5TQ3MzMysGxX+BiOS9gSG\nAR8C/gy8CiwPDAQ2B64FzouIt3soHt9gxMysk3yDkcaVocT8aeBLEfFC9ROSlgH2B/YjDeFoZmZW\naoUvMReNS8xmZp3nEnPjCl9iliTS0I0zI2KSpMOA3YFngYsi4r2mBmhmZtaNCl9ilnQRMIh0Xflp\nYGXgNmBXUvxH9HA8LjGbmXWSS8yNK0NifhLYipSYpwFrR8QHuST9eER8vIfjcWI2M+skJ+bGlaEf\n87uR/Av4e0R8AJCz45z2VpR0qaQZkh6vmv8NSU9KekLSqIr5wyU9I+kpSfstiTdjZmbWnsJfYwbW\nknQyoKrHAGt1sO5lwAXAFW0zcverA4GtI2KOpLXy/K2Aw0il8wHAnZIGup+0mVnXzZoF55zT7CjK\npQwl5l8Dq5CuLVc+XgW4uL0VI2I8MKtq9leBn0bEnLzMa3n+QcDYiJgTEVNJjcuGdNN7MDPrU2bP\nhlGjYOBAeP31ZkdTLoUvMUfEiG7e5EeA3SX9BHgXODUiHiHdUezBiuVeIpWczcysQXPmwGWXwQ9/\nCDvtBOPHw5Zbwq9/3ezIyqPwiVnSBRWTwYJq7ACIiJM6ucmlgdUjYidJnwB+B2xWZ9marbxGjBgx\n/3FLSwstLS2dDMHMrHeJgOuug+9/HwYMgNNPb2XGjFauvrrZkZVPGVplH50f7ky6/nsNKTkfAvw1\nIr7SwfqbALdExKA8/QdgZETcnaefBXYCjgeIiJF5/m3AmRHxUNX23CrbzKzCnXfCsGEwbx6MHAn7\n7guqan/tVtmNK3yJOSLGAEj6KrBr27VhSb8E7u3CJm8C9gLuljQQWDYiXpd0M3CVpJ+TqrA/Akzo\nhrdgZtYrPfIIDB8OU6fC2WfDIYfAUmVouVRwZdqF/YFVK6ZXyfPqkjQWuB8YKOlFSccAlwKb5S5U\nY4EvAkTEZFK19mTgD8CJLhqbmS1qyhQ49FA48ED43Odg8mQ47DAn5e5S+KrsNjmpjgDGkaqy9wBG\ntJWoezAO52sz65OmTUuNuq6/Hk45BU46CVZaqbF1XZXduNIkZgBJ6wE7khplTYiIl5sQgxOzmfUp\ns2alrk8XXwzHHZeuJ6+xRue24cTcuMJfY5a0Se5XTE7EN1U9vxQwICJebEJ4Zma91uzZcMEFcO65\ncPDB8NhjsMEGzY6q9yt8YgbOzcn3JmAi8BrpvtkfAVqAfYAzASdmM7NuUK8vsvWMUlRlS/oYcASp\ny9R6wL+AJ4H/B1wXEe/2YCyuyjazXqm6L/LIkTCkm+5/6KrsxpUiMReJE7OZ9UaN9EVeHE7MjSt8\nVbakPahzBy6AiLinB8MxM+tV3Be5eApfYpZ0K7UT89bABhHRr4fjcYnZzEpvypRUZX3vvXDGGam1\n9TLLLLnXc4m5cYX/XRQR+0fEAW1/wEhgGeBl4ODmRmdmVi7TpsEJJ8DOO8PgwfDMM/CVryzZpGyd\nU/iq7DaS9gG+nyd/HBF3NDMeM7Myqe6LPGVK5/siW88ofGKWtD9wOvAm8IM8xrKZmTXAfZHLpwzX\nmOeRxkZ+rMbTEREH9nA8vsZsZoVX3Rf57LOb2xfZ15gbV/gSM2kkKFh4LGYq5pmZWVbdF/mGG7qv\nL7L1jMKXmIvGJWYzK6ol3Rd5cbjE3LgylJjNzKwd7ovcu/ijMzMrKY+L3Dv54zMzKxn3Re7dCl+V\nLemWisnqBmDttsqWdCnwGeDViBhU9dwpwM+ANSNiZp43HDgWmAucFBG3d8+7MDNbfO6L3DeUocR8\nXv77G2lUqdHAxcA7eV57LgOGVs+UtCGwL/D3inlbAYcBW+V1LsrDTZqZNdXs2SkhDxwIb7yR+iKf\nc46Tcm9V+BJzRLQCSDovIraveOpmSRM7WHe8pE1qPPVz4LvA7yvmHQSMjYg5wFRJzwJDgAe7Hr2Z\nWdd5XOS+qfCJucKKkj4cEc8BSNoMWLGzG5F0EPBSREzSwv0I1mfhJPwSMGAx4jUz6xL3Re7bypSY\nvw2Mk/R8nt4E+HJnNiBpReB7pGrs+bPbWaVmh+URI0bMf9zS0kJLS0tnwjAzq6uyL/IFFxSrL3Jn\ntLa20tra2uwwSqlUNxiRtDywJSlhPhUR7zWwzibALRExSNIg4E5gdn56A2AasCNwDEBEjMzr3Qac\nGREPVW3PNxgxs27X2/si+wYjjStbYt4Z2JRU0g+AiLiig3U2ISfmGs89D2wfETNz46+rSNeVB5AS\n+ObVWdiJ2cy6U0+Pi9wsTsyNK83vMUm/Ac4FdgF2AD6R/9pbZyxwPzBQ0ouSjqlaZH6GjYjJwO+A\nycAfgBOdgc1sSXFfZKunNCVmSU8CWzU7WbrEbGaLo7ov8rBhfaPbk0vMjStNiRl4Aliv2UGYmXWF\n+yJbo8rUKnstYLKkCUBbo68eH4/ZzKwz3BfZOqtMiXlEswMwM2uU+yJbV5XmGnNR+BqzmXWkyOMi\nN4uvMTeuNCVmSZ8E/hv4KLAc0A94JyJWbWpgZmZZb++LbD2jTIfMhcAXgGeA5YHjgIuaGpGZGR4X\n2bpXqQ6biHgG6BcRcyOi5shRZmY9xX2RbUkoTVU28E9JywGPSToHeIX273NtZrZEeFxkW5LKVGL+\nIiner5Pudb0B8LmmRmRmfYr7IltPcKvsTnKrbLO+p7ov8tlnuy9yZ7lVduPKVJVtZtaj3BfZmsGJ\n2cysht4yLrKVjxOzmVkF90W2Ziv14SZpdLNjMLPeoa0v8kEHwX/8R+qLfNxxKy+SlH/1q19x5ZVX\n9mhsm2yyCTNnzuzR17TmKXyJWVK99o4CPtOTsZhZ7zNtWmrUdcMNcMopMGYMrLhiek416q5POOGE\nJRpPW+PSytfODaeW6OtacZShxPw6MLHG3yOkEafMzDpt1qx0DXnrraF/f3j66TTdlpTrGTFiBOed\ndx4ALS0tDBs2jB133JEtttiCe++9F4C5c+fyne98hyFDhrDNNtswenSq3HvnnXfYZ5992H777dl6\n6625+eabAZg6dSpbbLEFRx11FIMGDeKll15a5HXPOecctt56a3bccUeee+45AI4++miuv/76+cus\nvPLKALz88svsvvvuDB48mEGDBs2Py8qhDIn5b0BLRGxa/QfMaG9FSZdKmiHp8Yp5P5P0pKTHJN0g\nabWK54ZLekbSU5L2W3JvycyapbIv8syZqS/yqFGN90WWNL80K4m5c+fy0EMPcf7553PWWWcBcMkl\nl9C/f38mTJjAhAkTuPjii5k6dSorrLACN954IxMnTuRPf/oTp5xyyvztPvvss3zta1/jiSeeYMMN\nN1zkdfv378+kSZP4+te/zre+9a35r18dG8BVV13F0KFDefTRR5k0aRLbbrttp/eTNU8ZEvP5wOp1\nnvtZB+vWum3n7cDHImIbYAowHEDSVsBhwFZ5nYsklWH/mFkD5syB0aNTQn744TQu8ujRsMEGi7fd\nf//3fwdgu+22Y+rUqQDcfvvtXHHFFQwePJiddtqJmTNn8uyzzxIRDB8+nG222YZ9992X6dOn8+qr\nrwKw8cYbM6Sdvlif//znATj88MN54IEH2o1pyJAhXHbZZZx11llMmjRpfknayqHw15gj4sJ2nvvv\nDtYdL2mTqnl3VEw+xIK7hx0EjI2IOcBUSc8CQ4AHuxC2mRVEZV/kDTaAG2+ET3yi+7a/3HLLAdCv\nXz8++OCD+fMvvPBC9t1334WWHTNmDK+//jp//vOf6devH5tuuinvvvsuACuttFLDr9lWMl566aWZ\nN28eAPPmzeP9998HYLfddmP8+PHceuutHH300Zx88skceeSRXX+T1qP6eonwWOD/8uP1gcoLOy8B\nA3o8IjPrNnfemZLwyJFw4YULphdXRw2xPvWpT3HRRRfNT9RTpkxh9uzZvP3226y99tr069ePcePG\n8fe//73h17vmmmsAuOaaa9h5552B1Fp74sSJANx8883MmTMHgBdeeIG11lqL448/nuOPP55HH320\nS+/TmqPwJeYlRdLpwPsRcVU7i9X89o0YMWL+45aWFlpaWro1NjNbPJV9kX/849T9qSt9kWfPnr3Q\n9d6TTz4ZqN1au3L+8ccfz9SpU9luu+2ICNZee21uuukmjjjiCA444AC23nprdthhBz760Y8usm69\n7c6aNYttttmG5ZdfnrFjxwLwpS99iYMOOohtt92WoUOHzq+yHjduHOeeey7LLLMMq6yyCldccUXn\n3/xiam1tpbW1tcdftzfo9ffKzlXZt0TEoIp5RwNfAvaOiHfzvGEAETEyT98GnBkRD1Vtz/fKNiuo\nKVNSlfV998EZZ8Cxx3oIxqLwvbIbV6qqbEkDJO0iaXdJe0javQvbGAp8BzioLSlnNwOHS1pW0qbA\nR4AJ3RO5mS1JbeMi77ILbLddGhf5hBOclK2cSlOVLWkUqdX0ZGBuxVP3tLPOWGAPYE1JLwJnklph\nLwvckauOHoiIEyNisqTf5e1/AJzoorFZsVWOi3z88akvsodgtLIrTVW2pCnAoIh4r8lxOF+bNdns\n2WlgiXPPhc9+NlVbL263J1uyXJXduNKUmIHnSCXdpiZmM2ue6nGRx4/3uMjW+5QpMf8L+Iuku1iQ\nnCMiTmpiTGbWA5Z0X2SzIilTYr45/7XVI4s63ZnMrPdoGxc5IvVF3mcfj4tsvVtprjEDSFoOGJgn\nn8p36erpGHyN2awHdFdfZCsGX2NuXGkOc0ktpHtb/0/+e0bSHk0Nysy6Xa1xkQ891EnZ+o4yHeo/\nB/aLiN0jYndgP+AXTY7JzLqJ+yKbJWVKzEtHxNNtExExhXJdIzezGro6LrJZb1WmxDZR0q+B35Aa\nfh0BPNLckMysq6r7Ij/2mPsim0G5EvNXga8Bbd2jxgMXNS8cM+sK90U2a1+pWmUXgVtlm3VNdV/k\nkSPdF7kvcavsxhW+xCzp2og4RNITLNpvOSJi62bEZWaNc19ks8YVvsQsaf2ImC5pY9K15UoREY2N\nNN598bjEbNYg90W2Ni4xN67wX5GImJ4fnhgRUyv/gBObGJqZ1eG+yGZdV6avyX415n26x6Mws7rc\nF9ls8RU+MUv6qqTHgS0kPV7xNxWY1OTwzAz3RTbrToVPzMBVwAGkASz2z48PALaPiCPaW1HSpZJm\n5MTeNm8NSXdImiLpdkn9K54bLukZSU9JqlVCN7MKs2fDqFEwcCDMnJn6Io8aBWus0ezIzMqr8Ik5\nIt7K15QPzw29ZgPzgJUkbdTB6pcBQ6vmDQPuiIiBwF15GklbAYcBW+V1LpJU+P1j1gxz5sDo0Skh\nP/xw6os8erRvEGLWHUqTeCQdKOkZ4HngbmAq8If21omI8cCsqtkHApfnx5cDB+fHBwFjI2JOblj2\nLDCkW4KNxFJaAAAZbElEQVQ36yUi4Npr4eMfh2uuSeMiX3edbxBi1p0K34+5wtnAJ0ml3cGS9gSO\n7MJ21omIGfnxDGCd/Hh94MGK5V4CBnQ1WLPexn2RzXpGmRLznIh4XdJSkvpFxDhJ/7U4G4yIkNRe\np2R3WLY+z32RzXpWmRLzLEmrkO6R/VtJrwLvdGE7MyStGxGvSFoPeDXPnwZsWLHcBnneIkaMGDH/\ncUtLCy0tLV0Iw6zYpkxJt8+87z444ww49lh3e7LGtba20tra2uwwSqnwd/5qI2kl4F3SdfEjgFWB\n30bEGx2stwlwS0QMytPnAG9ExChJw4D+ETEsN/66inRdeQBwJ7B59W2+fOcv6+2mTUsDTNxwA5xy\nCpx0krs92eLznb8aV6YKqTMiYm5unDUmIv4b+G57K0gaC9xP6gP9oqRjgJHAvpKmAHvlaSJiMvA7\nYDKpUdmJzsDWl7gvslkxlKnE/GhEDK6a93hbSbgH43C+tl6lelzkM85wtyfrfi4xN67w15glfZV0\nT+wPV94oBFgFuK85UZmVn8dFNiumwpeYJa0GrE6qcj6NBSNMvR0RM5sQj0vMVmoeF9mawSXmxhU+\nMbeRtDnwUkS8m/swDwKuiIg3ezgOJ2Yrrcq+yCNHui+y9Rwn5saVKTH/BdgB2AT4P+D3wMciokdH\nmHJitjJyX2RrNifmxpXpqxkR8QHw78AFEfEdYL0mx2RWaB4X2ax8yvT1fF/SF4AvArfmeb7dgVkN\nHhfZrLzKlJiPBXYCfhwRz0vaFLiyyTGZFYr7IpuVX2muMReFrzFbEbkvshWdrzE3rvD9mM2sPvdF\nNut9nJjNSqi6L/KNN7ovsllv4cRsVjIeF9msdytNYpa0BXAqqR9zW9wREXs1LSizHuS+yGZ9Q2ka\nf0maBPwS+DMwN8+OiJjYw3G48Zf1KI+LbL2BG381rjQlZmBORPyy2UGY9ZTqcZHHjHG3J7O+oEwV\nYbdI+pqk9SSt0fbX7KDMupv7Ipv1bWUqMR8NBOk6c6VNez4Us+5X3Rf5scfcF9msLypNYo6ITbpz\ne5K+DRxHSvaPA8cAKwHXABsDU4FDe3r0Kut73BfZzCqVpipb0kqSfiDp4jz9EUn7d3FbA4BvANtH\nxCCgH3A4MAy4IyIGAnflabMlIgKuvRY+/nG45prUF/m665yUzfq60pSYgcuAicDOeXo6cB0LBrTo\nrKWBFSXNBVbM2xsO7JGfvxxoxcnZlgD3RTazesqUmD8cEYdKOhwgIv6pLp7JImKapPOAF4B/AX+M\niDskrRMRM/JiM4B1uiNwszbui2xmHSnTKeE9SSu0TUj6MPBeVzYkaXXgQNLNStYHVpb0n5XL5M7K\n7rBs3cLjIptZo8pUYh4B3AZsIOkqYBdSS+2u2Ad4PiLeAJB0A/BJ4BVJ60bEK5LWA16tGciIEfMf\nt7S00NLS0sUwrLdzX2Trq1pbW2ltbW12GKVUmjt/AUhaE9gREPBgRLzexe0MAS4FPgG8C4wBJpBa\nY78REaMkDQP6R8SwqnV95y/r0KxZMGoUXHwxHH88nHYarOFe99aH+c5fjStNRZqkpYB/I7WkvpXU\ncGtIV7YVERNIDcf+DEzKs0cDI4F9JU0B9srTZg2bPTsl5IEDYebM1Bd51CgnZTNrXGlKzJL+F5gH\n7BkRH813/bo9Inbo4ThcYrZFVPdFPvtsd3syq+QSc+PKdI15x4gYLOlRgIiYKcm38rem8rjIZtbd\nypSY35fUr21C0lqkErRZU7gvspktCWVKzBcANwJrS/oJ8B/A95sbkvVF7otsZktSaa4xA0j6KLB3\nnrwrIp5sQgy+xtxHeVxks67zNebGleZ3vqSzgQ2AyyLiwmYkZeubpk2DE06AXXaB7baDZ55J007K\nZrYklCYxA38DvgA8ImmCpPMkHdzsoKz38rjIZtYMparKBpC0LnAYaVzm1SNi5R5+fVdl93LV4yKf\ncYbHRTZbXK7KblxpGn9JugT4KGlwiXuBzwGPNjUo61U++AAuvdTjIptZc5UmMQNrkOJ9E5gJvB4R\nc5obkvUGEXD99XD66e6LbGbNV5rEHBGfhfkts4cC4yT1iwhXMlqX3XVXum48b577IptZMZQmMUs6\nANgt//UH/gSMb2pQVloTJ6aE7L7IZlY0pUnMwKdIifj8iJje7GCsnNwX2cyKrkxlhNkRcU1lUpY0\nqpkBWXlMn+6+yGZWDmVKzPvWmPfpHo/CSqWtL/KgQe6LbGblUPiqbElfBU4EPizp8YqnVgHua05U\nVnTVfZEfe8x9kc2sHAqfmIGrgD8AI4HTgLY2s/+IiDeaFpUVkvsim1nZFb4qOyLeioipEXE4sBGw\nZ0RMBZaStGlXtyupv6TrJD0pabKkHSWtIekOSVMk3S6pf3e9D1uy2sZF/tjH4JprUl/k665zUjaz\n8inNLTkljQC2B7aIiIGSBgDXRsTOXdze5cDdEXGppKWBlYDTSTcuOUfSaaRbfg6rWs+35CyYyr7I\nI0e6L7JZEfmWnI0rU2J+DBgMTIyIwXnepIjYugvbWg14NCI2q5r/FLBHRMzI9+RujYgtq5ZxYi4I\n90U2Kw8n5saV6TT2XkTMa5uQtNJibGtT4DVJl0n6s6SL8/bWiYgZeZkZwDqL8Rq2hEyZAoceCgce\nmJLx5Mlp2knZzHqDMjT+anOtpF8B/SV9GTgW+HUXt7U0sB3w9Yh4WNL5wEJV1hERkmoWjUeMGDH/\ncUtLCy0tLV0Mwzpj+nQ46yy44QY45RQYM8bdnsyKqrW1ldbW1maHUUqlqcoGkLQfsF+e/GNE3NHF\n7awLPBARm+bpXYHhwGakxmWvSFoPGOeq7OabNQtGjYKLL4bjj4fTToM11mh2VGbWGa7KblzZKv8e\nJ92W8578uEsi4hXgRUkD86x9gL8CtwBH5XlHATd1PVRbXLNnp4Q8cCDMnJn6Io8a5aRsZr1baUrM\nko4HzgDG5VktwA8j4pIubm8bUlX4ssBzwDFAP+B3pG5ZU4FDI+LNqvVcYl7Cqvsin322uz2ZlZ1L\nzI0rU2KeAnyy7aYikj5Eqo4e2P6a3R6HE/MSUj0u8siRHhfZrLdwYm5cmRp/vQ68UzH9Tp5nvYDH\nRTYzSwqfmCWdkh8+Czwkqe2670HApOZEZd3FfZHNzBZW+MRMGqwiSNeB/5YfA/y+4rGVjMdFNjOr\nrTTXmIvC15gXT1tf5OuvT32Rv/lN90U26wt8jblxrjS0HlE5LvJqq6US8/DhTspmZtWcmG2JquyL\n/MYbqS/yOee4L7KZWT1luMZsJeRxkc3MuqY0JWZJP5O0qqRlJN0l6XVJRzY7LltY5bjIV1+d7mvt\ncZHNzBpXmsZfkh6LiG0kfRbYHzgZGN+VYR8XMw43/qqjrS/y3Lnp5iD77uu+yGaWuPFX48pUld0W\n6/7AdRHxVr3Rn6xnVfZFPvtsOOQQ90U2M+uqMp0+b5H0FLA9cJektYF3mxxTn9Y2LvIBB8DnPpfG\nRT7sMCdlM7PFUZqqbJh/f+y3IuIDSSsBq+SRonoyhj5flV3dF/mkk2CllZodlZkVmauyG1easo2k\nQ4A5OSn/APgNsH6Tw+pT6vVFdlI2M+s+pUnMwBkR8bakXYG9gUuA/21yTH2C+yKbmfWcMiXmufn/\n/sDFEXEr4LsrL0EffACjR6eE/PDDqS/yxRenIRnNzGzJKFOr7GmSRgP7AiMlLU+5fliURuW4yAMG\npL7IQ4Y0Oyozs76hNI2/cmOvocCkiHhG0nrAoIi4vYvb6wc8ArwUEQdIWgO4BtgYmAocGhFv1liv\nVzf+cl9kM1sS3PircaUpcUbEP0lDPw6V9HVg7a4m5eybwGQWDB05DLgjIgYCd+XpPmPixJSEv/IV\nOPVUeOQR2G8/J2Uzs55WmsQs6ZuklthrAesAv5F0Uhe3tQHwaeDXQFvqORC4PD++HDh4sQIuCfdF\nNjMrljKdfo8HdoyIMyLiB8BOwJe6uK1fAN8B5lXMWyciZuTHM0jJv9eaPh1OOAF23hkGD4Znnkml\n5WXcnM7MrKnK1PgLFk6k8+ou1Q5J+wOvRsSjklpqLRMR0d7tPkeMGDH/cUtLCy0tNTdTSLNmpa5P\nF18Mxx2XSszu9mRm3a21tZXW1tZmh1FKZWr8dTJwNHADqfr5YGBMRPyik9v5CXAk8AGwPLBq3uYn\ngJaIeCU3LBsXEYuMiVTWxl+zZ8MFF8C558LBB8OZZ7rbk5n1HDf+alxpEjOApO2BXUkNtsZHxKOL\nub09gFNzq+xzgDciYpSkYUD/iFikAVjZEnP1uMhnn+0hGM2s5zkxN67wVdm5G1Ob50ldmQBC0hoR\nMXMxX6Ity44EfifpuPwahy7mdpvKfZHNzMqp8CVmSVNZkDyrRURs1oPhlKLE7L7IZlY0LjE3rvCJ\nuWiKnJg9LrKZFZUTc+N82u4F3BfZzKz38Km7xNwX2cys93FiLiGPi2xm1nuVIjFLWlrS082Oo9k8\nLrKZWe9XisQcER8AT0nauNmxNIPHRTYz6zsK34+5whrAXyVNAP6Z50VEHNjEmJYo90U2M+t7ypSY\nf1BjXjH7LXWDyr7IF1zgvshmZn1FqfoxS9oE2Dwi7pS0IrB0RLzdwzEs0X7M7otsZr2R+zE3rjSn\nfElfBq4FfpVnbQDc2LyIupf7IpuZGZQoMQNfIw1g8TZAREwB1m5qRN3AfZHNzKxSmRLzexHxXtuE\npKUp8TVm90U2M7NaypSY75Z0OrCipH1J1dq3NDmmTnNfZDMza0+ZEvNpwGvA48AJwP8B329qRJ3g\nvshmZtaI0rTKlrQ3cH9E/KvJcXSqVXZ1X+SRI90X2cz6HrfKblyZEvMVwE7ALOCe/HdvRMzq4Tga\nTsweF9nMLHFiblxpEnMbSesD/wGcCqwfEZ2+SYqkDYErSK26AxgdEf8taQ3gGmBjYCpwaES8WbVu\nh4nZfZHNzBbmxNy40iRmSUeSukttTbrWfC+pxHx/F7a1LrBuRPxF0srAROBg4Bjg9Yg4R9JpwOoR\nMaxq3bqJecoU+P734d574Ywz4Ljj3O3JzAycmDujTIn5DeA54JdAa0Q8343bvgm4MP/tEREzcvJu\njYgtq5ZdJDFPnw5nnZWuJZ9yCpx0krs9mZlVcmJuXJkqWNcEjgWWB34saYKk3yzuRvNtPgcDDwHr\nRMSM/NQMYJ321nVfZDMz625lGsRiFWAj0vXfTYD+wLzF2WCuxr4e+GZE/EMVLbMiIiTVrE44/fQR\nPPQQ3H8/7LlnC4891uJuT2ZmFVpbW2ltbW12GKVUpqrsScB9wHjgnoh4aTG3twxwK/CHiDg/z3sK\naImIVyStB4yrVZU9YECw006pYdeWWy66bTMzW5irshtXmsTcRtIqpALtO4uxDQGXA29ExLcr5p+T\n542SNAzoX6vx10MPhfsim5l1ghNz40qTmCUNInVx+lCe9RpwVEQ80YVt7UrqBz2JBffbHg5MAH5H\nqjKfShe7S5mZ2cKcmBtXpsT8APC9iBiXp1uAn0TEzj0chxOzmVknOTE3rkytsldsS8oAEdEKuP2z\nmZn1KmVqlf28pB8AVwICjgD+1tyQzMzMuleZSszHkG6heQOpi9NapH7NZmZmvUbhS8ySVgC+AmxO\naqx1ckTMaW5UZmZmS0YZSsyXA9uTxmH+N+Dc5oZjZma25BS+VbakxyNiUH68NPBwRAxuYjxulW1m\n1kluld24MpSYP2h7EBEftLegmZlZ2ZWhxDwXmF0xawXgX/lxRMSqPRyPS8xmZp3kEnPjCt/4KyL6\nNTsGMzOznlKGqmwzM7M+w4nZzMysQJyYzczMCsSJ2czMrECcmM3MzArEidnMzKxAnJirSBoq6SlJ\nz0g6rdnxmJlZ3+LEXEFSP+BCYCiwFfB5SR9tblRd09ra2uwQGlKGOMsQIzjO7uY4rVmcmBc2BHg2\nIqbmEayuBg5qckxdUpYvaxniLEOM4Di7m+O0ZnFiXtgA4MWK6ZfyPDMzsx7hxLww3wTbzMyaqvCD\nWPQkSTsBIyJiaJ4eDsyLiFEVy3iHmZl1gQexaIwTc4U83vPTwN7AdGAC8PmIeLKpgZmZWZ9R+NGl\nelJEfCDp68AfgX7AJU7KZmbWk1xiNjMzKxA3/mpQWW48ImmqpEmSHpU0odnxtJF0qaQZkh6vmLeG\npDskTZF0u6T+zYwxx1QrzhGSXsr79FFJQ5sZY45pQ0njJP1V0hOSTsrzC7VP24mzMPtU0vKSHpL0\nlxzjiDy/aPuyXpyF2ZeVJPXL8dySpwu1P4vMJeYG5BuPPA3sA0wDHqag154lPQ9sHxEzmx1LJUm7\nAe8AV0TEoDzvHOD1iDgn/9hZPSKGFTDOM4F/RMTPmxlbJUnrAutGxF8krQxMBA4GjqFA+7SdOA+l\nQPtU0ooRMTu3M7kX+CbwOQq0L9uJcygF2pdtJJ0MbA+sEhEHFvH7XlQuMTembDceKVzLx4gYD8yq\nmn0gcHl+fDnphN1UdeKEgu3TiHglIv6SH78DPEnqc1+ofdpOnFCgfRoRs/PDZYFlSF0nC7UvoW6c\nUKB9CSBpA+DTwK9ZEFvh9mdROTE3pkw3HgngTkmPSPpSs4PpwDoRMSM/ngGs08xgOvANSY9JuqRo\nVXCSNgEGAw9R4H1aEeeDeVZh9qmkpST9hbTPbo+ICRRwX9aJEwq0L7NfAN8B5lXMK9z+LCon5saU\nqb5/l4gYDPwb8LVcNVt4ka6pFHU//xLYFNgWeBk4r7nhLJCrh68HvhkR/6h8rkj7NMd5HSnOdyjY\nPo2IeRGxLbABsKOkj1c9X4h9WSPOj1GwfSlpf+DViHiUOiX5ouzPonJibsw0YMOK6Q1JpebCiYiX\n8//XgBtJ1fBFNSNfg0TSesCrTY6npoh4NTJS1Vwh9qmkZUhJ+cqIuCnPLtw+rYjzN21xFnWfRsRb\nwDjgUxRwX7apiHNoAfflzsCBub3LWGAvSVdS4P1ZNE7MjXkE+IikTSQtCxwG3NzkmBYhaUVJq+TH\nKwH7AY+3v1ZT3QwclR8fBdzUzrJNk08ibT5LAfapJAGXAJMj4vyKpwq1T+vFWaR9KmnNtupfSSsA\n+5KuhRdtX9aMsy3ZZU0/PiPiexGxYURsChwO/CkijqRg+7PI3Cq7QZL+DTifBTce+WmTQ1qEpE1J\npWRIN4/5bVHilDQW2ANYk3R96Qzg98DvgI2AqcChEfFms2KEmnGeCbSQqgkDeB44oeJaWVNI2hW4\nB5jEgirB4aS71RVmn9aJ83vA5ynIPpU0iNQYqR+psHJNRJwtaQ2KtS/rxXkFBdmX1STtAZySW2UX\nan8WmROzmZlZgbgq28zMrECcmM3MzArEidnMzKxAnJjNzMwKxInZzMysQJyYzczMCsSJ2ayKpHmS\nzq2YPjWPMNUd2x4j6XPdsa0OXucQSZMl3dXg8t/rynKS7utKfGZWnxOz2aLeBz4r6UN5ujs7+3d5\nW3mov0YdBxwfEXs3uPzwriwXEbt0IiYza4ATs9mi5gCjgW9XP1Fd4pX0Tv7fIuluSTdJek7STyUd\nkQe2nyRps4rN7CPpYUlPS/pMXr+fpJ9JmpBHCfpyxXbHS/o98Nca8Xw+b/9xSSPzvDOAXYBL8xi4\nlcuvJ+kepQHsH5e0a15vhTzvyrzcTXmEsifaRimrs1zb+1eO//Ecz6EV8bdKulbSk5J+UxHLSEl/\nze/3Z537iMx6r878AjfrSy4CJlUnNhYt8VZObw1sSRrP+W/AxRGxo6STgG+QEr2AjSPiE5I2B8bl\n/0cBb0bEEEnLAfdKuj1vdzDwsYj4e+ULS1ofGAlsB7wJ3C7poIj4oaQ9SbdC/HNVvJ8HbouIn0ha\nClgxIu6V9LU8KlmbYyJiVr4n8wRJ10XEsBrLtb3/fwe2yftgLeBhSffk57YFtiKNfHSfpF2Ap4CD\nI2LL/F5WxcwAl5jNaspDKF4BnNSJ1R6OiBkR8T7wHNCWWJ8ANmnbNOl+wUTEs6QEviVpwJEvSnqU\nNF7xGsDmeZ0J1Uk5+wQwLiLeiIi5wG+B3SuerzXk3sPAMfma+aA8BGMt31Qa9/cB0mhqH2n3ncOu\nwFV5kKNXgbtzfJHjn55HP/oLsDHph8S7SuMHfxb4VwfbN+sznJjN6jufdK12pYp5H5C/N7nEuWzF\nc+9VPJ5XMT2P9mun2kqdX4+IwfnvwxFxZ57/z3bWq0y+YuES/CLXsyNiPLAbaSjTMZKOrF5GUguw\nN7BTHvv3UWD5duKvFUvl61ful7nAMvmHxBDSGM37A7d1sH2zPsOJ2ayOiJhFKt0ex4IkMxXYPj8+\nEFimk5sVcEi+JvthYDNSte4fgRPbGnhJGihpxQ629TCwh6QPSepHGmLv7nZfXNoIeC0ifk0ajrGt\nWnpOReOyVYFZEfGupC2BnSo2UblcpfHAYZKWkrQWqeQ+gdql9rZhSftHxB+Ak0nV4GaGrzGb1VJZ\n0jwP+HrF9MXA73M1723AO3XWq95eVDx+gZS0ViUN0fe+pF+Tqrv/LEmkQeQ/W7XuwhuNeFnSMGAc\nKQHeGhG3dPDeWoDvSJoD/AP4Yp4/mnRNfSLph8hXJE0GniZVZ1O9XB5jN3IsN0r6JPBYnvediHhV\n0kdrxB/AKqT9uHyOfZGGdmZ9lYd9NDMzKxBXZZuZmRWIE7OZmVmBODGbmZkViBOzmZlZgTgxm5mZ\nFYgTs5mZWYE4MZuZmRWIE7OZmVmB/H9er5axAg/A2gAAAABJRU5ErkJggg==\n",
"text": [
"<matplotlib.figure.Figure at 0xa4215f8>"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 13.3, Page Number: 465"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"import numpy as np\n",
"\n",
"#variable declaration\n",
"N=np.array([5,10]) #number of station\n",
"alpha = 0.4 #attanuation (dB/km)\n",
"L_thru = 0.9 #coupler throughput(dB)\n",
"Li = 0.5 #intrinsic coupler loss(dB)\n",
"Lc = 1.0 #coupler to fiber loss(dB)\n",
"L = 0.5 #link length(km)\n",
"\n",
"#calculation\n",
"DR = (N-2)*(alpha*L+2*Lc+Li+L_thru) #dynamic range(dB)\n",
"\n",
"#result\n",
"print \"Dynamic range for number of station 5 = \",DR[0],\"dB\"\n",
"print \"Dynamic range for number of station 10 = \",DR[1],\"dB\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Dynamic range for number of station 5 = 10.8 dB\n",
"Dynamic range for number of station 10 = 28.8 dB\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 13.4, Page Number: 466"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#variable declaration\n",
"N1=10 #number of station\n",
"N2=50 #number of station\n",
"alpha = 0.4 #attanuation (dB/km)\n",
"L = 0.5 #link length(km)\n",
"Lc = 1.0 #coupler to fiber loss(dB)\n",
"Lexcess1 = 0.75 #excess loss for 10 station\n",
"Lexcess2 = 1.25 #excess loss for 50 station\n",
"\n",
"#calculation\n",
"Ps_Pr1 = Lexcess1+alpha*2*L+2*Lc+10*math.log10(N1) #power margin for 10 station(dB)\n",
"Ps_Pr2 = Lexcess2+alpha*2*L+2*Lc+10*math.log10(N2) #power margin for 50 station(dB)\n",
"\n",
"#result\n",
"print \"Power margin between transmitter and receiver for 10 station =\",round(Ps_Pr1,1),\"dB\"\n",
"print \"Power margin between transmitter and receiver for 50 station =\",round(Ps_Pr2,1),\"dB\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Power margin between transmitter and receiver for 10 station = 13.2 dB\n",
"Power margin between transmitter and receiver for 50 station = 20.6 dB\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 13.5, Page Number: 477"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#variable declaration\n",
"L_OM2 = 40 #Length of OM2 fiber(meter)\n",
"L_OM3 = 100 #Length of OM3 fiber(meter)\n",
"BW_OM2 = 500*10**6 #bandwidth of OM2 fiber(MHz)\n",
"BW_OM3 = 2000*10**6 #bandwidth of OM3 fiber(MHz)\n",
"\n",
"#calculation\n",
"Lmax = L_OM2*(BW_OM3/BW_OM2)+L_OM3 #Maximum link length(meter)\n",
"\n",
"#result\n",
"print \"Maximum link length = \",Lmax,\"m\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Maximum link length = 260 m\n"
]
}
],
"prompt_number": 15
}
],
"metadata": {}
}
]
}
|