summaryrefslogtreecommitdiff
path: root/Optical_Fiber_Communications_Principles_and_Practice/Chapter_6.ipynb
blob: fa4189b490d52c2a722572e8782173081f33da05 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
{
 "metadata": {
  "name": "Chapter_6"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": "Chapter 6 - Optical sources 1: the laser\n"
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 6.1, page 301"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "import math\n\n#Variable declaration\nc=2.998*10**8                              #speed of light in m/s\nh=0.5*10**-6                               #operating wavelength in um\nt=1000                                     #tempreture in K\n\n#Calculation\nf=c/h                                                 #operating frequency\nr=1/math.exp((6.626*10**-34*f)/(1.381*10**-23*t))     #ratio\n\n#Result\nprint'Ratio = %.1f x 10^-13 '%(r*10**13)\n",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "Ratio = 3.2 x 10^-13 \n"
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 6.2, page 306"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#Variable declaration\nn=1.78                                   #refractive index\nL=0.04                                   #length in meter\nh=0.55*10**-6                            #peak emission wavelength in um\nc=2.998*10**8                            #speed of light in meter\n\n#Calculation\nq=2*n*L/h                                #no of longitudinal modes\nsf=c/(2*n*L)                             #frequency separation modes\n\n#Result\nprint'No of longitudinal modes = %.1f x 10^5'%(q/10**5)\nprint'Frequency separation modes = %.1f GHz'%(sf/10**9)\n",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "No of longitudinal modes = 2.6 x 10^5\nFrequency separation modes = 2.1 GHz\n"
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 6.3, page 308"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#Variable declaration\na=30                                    #active cavity losses\nL=0.06                                  #length in meter\nr=0.3                                   #reflectivity\n\n\n#Calculation\ngm=a+(1/L)+(1/r)                           #laser gain coefficient\n\n\n#Result\nprint'Laser gain coefficient = %.1f cm^-1'%gm",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "Laser gain coefficient = 50.0 cm^-1\n"
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 6.4, page 315"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "import math\n\n#Variable declaration\nBt1=7.21*10**-10                                  #recombination coefficient of GaAs\nBt2=1.79*10**-15                                  #recombination coefficient of Si\nN=10**18                                          #hole concentration \n\n#Calculation\ntr1=(Bt1*N)**-1                                   #radiative carrier lifetime of GaAs\ntr2=(Bt2*N)**-1                                   #radiative carrier lifetime of Si\n\n#Result\nprint'Radiative carrier lifetime of silicon = %.2f ms'%(tr2*1000)\nprint'Radiative carrier lifetime of gallium arsenide = %.2f ns'%(tr1*10**9)",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "Radiative carrier lifetime of silicon = 0.56 ms\nRadiative carrier lifetime of gallium arsenide = 1.39 ns\n"
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 6.5, page 322"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "import math\n\n#Variable declaration\nn=3.6                                         #refractive index\nB=21*10**-3                                   #gain factor\na=10                                          #loss coefficient per cm\nL=250*10**-4                                  #optical cavity length\nw=100*10**-4                                  #optical cavity width\n\n#Calculation\nr=((n-1)/(n+1))**2                             #reflectivity\njth=(1/B)*(a+math.log(1/r)/L)                  #threshold current density\narea=L*w                                       #area\nith=jth*area                                   #threshold current\n \n#Result\nprint'Threshold current = %.1f mA'%(ith*1000)",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "Threshold current = 662.4 mA\n"
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 6.6, page 330"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "import math\n\n#Variable declaration\nnt=0.18                                  #total efficiency\nE=1.43                                   #bandgap energy\nV=2.5                                    #voltage\n\n\n#Calculation\nnep=nt*(E/V)*100                            #external power efficiency\n\n#Result\nprint'External power efficiency = %d percent'%nep",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "External power efficiency = 10 percent\n"
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 6.7, page 352"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "import math\n\n#Variable declaration\nt1=20+273                               #tempreture 20 \u00b0C convert to kelvin\nt2=80+273                               #tempreture 80 \u00b0C convert to kelvin\nL1=160                                  #tempreture 160K\nL2=55                                   #tempreture 55K\n\n#Calculation\na=t1*L1**-1                          \nb=t2*L1**-1\nc=t1*L2**-1\nd=t2*L2**-1\nJa1=math.exp(a)                           #For the AlGaAs device\nJa2=math.exp(b)                           #For the AlGaAs device\nJa=Ja2/Ja1                                #ratio of the current densities\nJb1=math.exp(c)                           #For the InGaAsP device\nJb2=math.exp(d)                           #For the InGaAsP device\nJb=Jb2/Jb1                                #ratio of the current densities\n\n#Result\nprint'Threshold current density at 20 \u00b0C = %.2f'%Ja\nprint'                          at 80 \u00b0C = %.2f' %Jb\n",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "Threshold current density at 20 \u00b0C = 1.45\n                          at 80 \u00b0C = 2.98\n"
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 6.8, page 359"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "import math\n\n#Variable declaration\ns=10**-15                            #RIN value    \nf=100*10**6                          #bandwidth\ne=1.602*10**-19                      #1 electron volt\nn=0.6                                #quantum efficiency\nh=1.55*10**-6                        #wavelength in um\npe=2*10**-3                          #power incident\nB=100*10**6                          #bandwidth\nh1=6.626*10**-34                     #plancks constant\nc=2.998*10**8                        #speed of light\n\n#Calculation\nsr=s*f                                 \nrin=math.sqrt(sr)                                 #RMS value of power fluctuation\nirn=e*n*h*rin*pe*math.sqrt(B)*10**-4/(h1*c)       #RMS noise current\n\n#Result\nprint'(a) RMS value of power fluctuation = %.2f x 10^-4 W'%(rin*10**4)\nprint'(b) RMS noise current = %.2f x 10^-7 A'%(irn*10**7)",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "(a) RMS value of power fluctuation = 3.16 x 10^-4 W\n(b) RMS noise current = 4.74 x 10^-7 A\n"
      }
     ],
     "prompt_number": 8
    }
   ],
   "metadata": {}
  }
 ]
}