1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
|
{
"metadata": {
"name": "Chapter_5"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": "Chapter 5 : Optical fiber connection: joints, couplers and isolators"
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 5.1, page 220"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math\n\n#Variable declaration\nn1=1.5 #core refractive index\nn=1.0 #refractive index of medium\n\n#Calculation\nr=((n1-n)/(n1+n))**2 #magnitude of the Fresnel reflection at the fiber\u2013air interface\nLoss=-10*math.log10(1-r) #loss in decibels at the single interface\nLoss1=2*Loss #total loss\n\n#Result\nprint'Total loss due to Fresnel reflection = %.2f dB'%Loss1 #loss due to fresnel resolution = 0.18X2 dB\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Total loss due to Fresnel reflection = 0.35 dB\n"
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 5.2, page 224"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math\n\n#Variable declaration\nn1=1.5 #refractive index\ny=5 #lateral offset of the fiber core axes in um\na=25 #radius in um\n\n#Calculation\nb=(16*n1**2)/(math.pi*(1+n1)**4)\nc=math.acos(y*(2*a)**-1)\ne=(y*a**-1)\nf=math.sqrt(1-(y*(2*a)**-1)**2)\nn=b*((2*c)-(e*f)) #coupling efficiency \nLoss=-10*math.log10(n) #insertion loss\nna=(math.pi**-1)*((2*c)-(e*f))\nLoss1=-10*math.log10(na) \n\n#Result\nprint'(a) Insertion loss = %.3f dB'%Loss\nprint'(b) Insertion loss = %.2f dB'%Loss1",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "(a) Insertion loss = 0.945 dB\n(b) Insertion loss = 0.59 dB\n"
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 5.3, page 226"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math\n\n#Variable declaration\ny=3 #lateral misalignment in um\na=25 #core radius in um\n\n#Calculation\nLt=0.85*(y*a**-1) #misalignment loss for guided modes\nn=1-Lt #coupling efficiency\nLoss=-10*math.log10(n) #insertion loss\nLt1=0.75*(y*a**-1) #both guided and leaky modes \nn1=1-Lt1 #coupling efficiency\nLoss1=-10*math.log10(n1) #insertion loss\n\n#Result\nprint'(a) Uniform illumination of all guided modes only = %.2f dB'%Loss\nprint'(b) Uniform illumination of all guided and leaky modes = %.2f dB'%Loss1",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "(a) Uniform illumination of all guided modes only = 0.47 dB\n(b) Uniform illumination of all guided and leaky modes = 0.41 dB\n"
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 5.4, page 227"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math\n\n#Variable declaration\nNA=0.2 #numerical aperture\nn1=1.48 #core refractive index\nang=(5*math.pi)/180 #angular misalignment (radians)\nNA1=0.4 #numerical aperture\n\n#Calculation\nna=((16*(n1)**2)/((1+n1)**4))*(1-(ang/(math.pi*NA))) #angular coupling efficiency\nLoss=-10*math.log10(na) #insertion loss\nna1=((16*(n1)**2)/((1+n1)**4))*(1-(ang/(math.pi*NA1))) #angular coupling efficiency\nLoss1=-10*math.log10(na1) #insertion loss\n\n#Result\nprint'Insertion loss at a joint (NA = 0.2) = %.2f dB'%Loss\nprint'Insertion loss at a joint (NA = 0.4) = %.2f dB'%Loss1 #in textbook, value is not calculated",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Insertion loss at a joint (NA = 0.2) = 0.98 dB\nInsertion loss at a joint (NA = 0.4) = 0.64 dB\n"
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 5.5, page 231"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math\n\n#Variable declaration\nV=2.4 #normalized frequency\na=4 #core radius in um\nNA=0.1 #numerical aperture \nn1=1.46 #core refractive index\ny=1 #lateral misalignment in um\nteta=math.pi/180 #angular misalignment in rad\n\n#Calculation\nw=a*(0.65+(1.62/V**1.5)+(2.88/V**6))/(2**0.5) #normalized spot size\nTl=2.17*(y/w)**2 #loss due to the lateral offset\nTa=2.17*((teta*w*n1*V)/(a*NA))**2 #loss due to angular misalignment\nTt=Tl+Ta #total insertion loss\n\n#Result\nprint'Total insertion loss = %.2f dB'%Tt",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Total insertion loss = 0.72 dB\n"
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 5.6, page 232"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math\n\n#Variable declaration\nw01=5.6 #mode-field radius in um\nw02=4.2 #mode-field radius in um\n\n#Calculation\nLoss=-10*math.log10(4*((w02/w01)+(w01/w02))**(-2)) #intrinsic loss \n\n#Result\nprint'Intrinsic loss = %.2f dB'%Loss",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Intrinsic loss = 0.35 dB\n"
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 5.7, page 262"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math\n\n#Variable declaration\np1=60 #input port power\np2=0.004 #output port power\np3=26 #output port power\np4=27.5 #output port power\n\n\n#Calculation\nxloss=10*math.log10(p1/(p3+p4)) #Excess Loss\niloss1=10*math.log10(p1*p3**-1) #Insertion Loss at input\niloss2=10*math.log10(p1/p4) #Insertion Loss at output\ncross=10*math.log10(p2/p1) #Crosstalk ratio\nsrat=((p3/(p3+p4))*100) #Split ratio\n\n#Result\nprint'Excess Loss = %.1f dB'%xloss\nprint'Insertion Loss at input = %.2f dB'%iloss1\nprint'Insertion Loss at output = %.2f dB'%iloss2\nprint'Crosstalk ratio = %.1f dB'%cross\nprint'Split ratio = %.1f percent'%srat",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Excess Loss = 0.5 dB\nInsertion Loss at input = 3.63 dB\nInsertion Loss at output = 3.39 dB\nCrosstalk ratio = -41.8 dB\nSplit ratio = 48.6 percent\n"
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 5.8, page 266"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math\n\n#Variable declaration\nN=32 #total no of ports\npi=10**3 #optical power at input in micro-watt\npj=14 #optical power at input in micro-watt\n\n\n#Calculation\nsloss=10*math.log10(N) #splitting loss\nxloss=10*math.log10(pi*(pj*N)**-1) #excess loss\ntloss=sloss+xloss #total loss\niloss=10*math.log10(pi*pj**-1) #insertion loss\n\n#Result\nprint'Total loss = %.2f dB'%tloss\nprint'Insertion loss = %.2f dB'%iloss\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Total loss = 18.54 dB\nInsertion loss = 18.54 dB\n"
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 5.9, page 268"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math\n\n#Variable declaration\np=16 #output ports\nl=0.2 #excess loss with split ratio of 50%\nl1=0.1 #splice loss\n\n#Calculation\nm=math.log(p)/math.log(2) #no of stages\nxloss=(4*l)+(3*l1) #excess loss\nsloss=10*math.log10(p) #split loss\niloss=sloss+xloss #insertion loss\n\n#Result\nprint'Insertion loss = %.2f dB'%iloss",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Insertion loss = 13.14 dB\n"
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 5.10, page 277"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#Variable declaration\nh=1.55*10**-6 #optical signal wavelength\nN=1.46 #refractive index\n\n\n#Calculation\nv=h/(2*N) #grating period of the FBG\n\n#Result\nprint'Grating period of FBG = %.2f um'%(v*10**6)",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Grating period of FBG = 0.53 um\n"
}
],
"prompt_number": 11
},
{
"cell_type": "code",
"collapsed": false,
"input": "",
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 11
}
],
"metadata": {}
}
]
}
|