1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
|
{
"metadata": {
"name": "Chapter_14"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": "Chapter 14 : Optical fiber measurements"
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 14.1, page 912"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math\n\n#Variable declaration\nv2=10.7 #increased voltage\nv1=2.1 #voltage\nl1=2 #length in Km\nl2=0.002 #length in Km\n\n\n\n#Calculation\na=(10/(l1-l2))*math.log10(v2/v1) #Attenuation\nu=0.2/(l1-l2) #incertainty\n\n#Result\nprint'Attenuation per Km = %.1f dB Km^-1'%a\nprint'Uncertainty = \u00b1 %.1f dB'%u",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Attenuation per Km = 3.5 dB Km^-1\nUncertainty = \u00b1 0.1 dB\n"
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 14.2, page 917"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math\n\n#Variable declaration\nt2=100 #time in sec\nt1=10 #time in sec\nti=0.525 #micro voltage\nto=0.021 #micro voltage\nC=1.64*10**4 #thermal capacity\ntin=4.3*10**-4 #maximum temperature rise\npop=98*10**-3 #optical power\n\n\n#Calculation\ntc=(t2-t1)/(math.log(ti)-math.log(to)) #time constant for the calorimeter\na=(C*tin)/(pop*tc) #absortion loss\n\n#Result\nprint'Absorption loss in dB = %.1f dB Km^-1'%a",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Absorption loss in dB = 2.6 dB Km^-1\n"
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 14.3, page 919"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math\n\n#Variable declaration\nVsc=6.14*10**-9 #voltage\nVop=153.38*10**-6 #voltage without scattering\nl=2.92 #length of fibre in cm\n\n\n#Calculation\na=4.343*10**5*Vsc/(l*Vop) #scattering loss\n\n#Result\nprint'Scattering loss in dB = %.1f dB Km^-1'%a",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Scattering loss in dB = 6.0 dB Km^-1\n"
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 14.4, page 922"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math\n\n#Variable declaration\nt1=12.6*10**-9 #time in sec\nt2=0.3*10**-9 #time in sec\n\n\n\n#Calculation\nt=math.sqrt(t1**2-t2**2)/1.2 #pulse broadening \nBop=0.44/t #bandwidth length product\n\n#Result\nprint'(a) 3dB pulse broadening = %.1f ns km^-1'%(t*10**9)\nprint'(b) Fiber bandwidth\u2013length product = %.1f MHz km'%(Bop*10**-6)",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "(a) 3dB pulse broadening = 10.5 ns km^-1\n(b) Fiber bandwidth\u2013length product = 41.9 MHz km\n"
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 14.5, page 940"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math\n\n#Variable declaration\nA=6.2 #output pattern size\nD=10 #screen position\n\n#Calculation\nNA=A/math.sqrt(A**2+(4*D**2)) #numerical aperture\n\n#Result\nprint'Numerical aperture = %.2f'%NA",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Numerical aperture = 0.30\n"
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 14.6, page 942"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#Variable declaration\nphi=4 #angular velocity\nl=0.1 #length in meter\nwe=300*10**-6 #shadow pulse width\n\n#Calculation\ns=l*phi #shadow velocity\nd=we*s #fibre diameter\n\n#Result\nprint'Outer fibre diameter = %.1f um'%(d*10**6)",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Outer fibre diameter = 120.0 um\n"
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 14.7, page 950"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math\n\n#Variable declaration\na=5*10**-3 #optical signal power\nb=20*10**-6 #optical signal power\nc=0.3*10**-3 #optical signal power\nd=800*10**-9 #optical signal power\n\n#Calculation\nadb=10*math.log10(a*10**3) #in dBm\nbdb=10*math.log10(b*10**3) #in dBm\ncdb=10*math.log10(c*10**6) #in dBu\nddb=10*math.log10(d*10**6) #in dBu\n\n#Result\nprint'(a) For a 1 mW reference power level'\nprint' optical signal power of 5 mW = %.2f dBm'%adb\nprint' optical signal power of 20 uW = %.2f dBm'%bdb\nprint'\\n(b) For a 1 \u03bcW reference power level'\nprint' optical signal power of 0.3 mW = %.2f dBu'%cdb #value given in a textbook is incorrect\nprint' optical signal power of 800 nW = %.2f dBu'%ddb",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "(a) For a 1 mW reference power level\n optical signal power of 5 mW = 6.99 dBm\n optical signal power of 20 uW = -16.99 dBm\n\n(b) For a 1 \u03bcW reference power level\n optical signal power of 0.3 mW = 24.77 dBu\n optical signal power of 800 nW = -0.97 dBu\n"
}
],
"prompt_number": 35
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 14.8, page 953"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math\n\n#Variable declaration\nNA=0.02 #numerical aperture\nyr=0.7*10**-3 #Rayleigh scattering coefficient\nc=2.998*10**8 #speed of light\nwo=50*10**-9 #pulse time\nn1=1.5\n\n#Calculation\np=0.5*(((NA**2)*yr*wo*c)/(4*(n1**3))) #power ratio\npdb=10*math.log10(p*10**3) #in dB\n\n#Result\nprint'Power ratio = %.3f X 10^-7'%(p*10**7) #value given in a textbook is incorrect\nprint'Power ratio in dB = %.1f dB'%pdb #value given in a textbook is incorrect",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Power ratio = 1.555 X 10^-7\nPower ratio in dB = -38.1 dB\n"
}
],
"prompt_number": 19
}
],
"metadata": {}
}
]
}
|