1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
|
{
"metadata": {
"name": "Chapter_11"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": "Chapter 11 : Integrated optics and photonics"
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 11.1, page 624"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math\n\n#Variable declaration\nh=1.3*10**-6 #wavlength\nd=25*10**-6 #distance between the electrodes\nn1=2.1 #refractive index\nr=30.8*10**-12 #electro-optic coefficient\nl=2*10**-2 #length\n\n\n#Calculation\nV=(h*d)/(n1**3*r*l) #voltage\n\n#Result\nprint'Voltage = %.1f V'%V",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Voltage = 5.7 V\n"
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 11.2, page 629"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math\n\n#Variable declaration\nn1=3.1 #refractive index\nthet=1 #angle in degree\nh=1.52*10**-6 #wavelength\nl=10**-2 #length\n\n#Calculation\nne=n1*math.sin(2*thet*math.pi/180) #effective refractive index\nD=h/(2*ne) #Corrugation period\ns=D*h/l #filter bandwidth\n\n\n#Result\nprint'Corrugation period = %.1f um'%(D*10**6)\nprint'Filter 3 dB bandwidth = %.1f \u00c5 '%(s*10**10)",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Corrugation period = 7.0 um\nFilter 3 dB bandwidth = 10.7 \u00c5 \n"
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 11.3, page 631"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math\n\n#Variable declaration\nn1=8 #no of bands\nN1=0 #no of channels between any two bands\nN2=1 #no of channels between any two bands\nN3=2 #no of channels between any two bands\nM=4 #no of channels in each band\n\n#Calculation\nCs1=(n1-1)*N1 #total number of channels skipped \nCt1=(n1*M)+Cs1 #total number of channels for 4 skip-0 scheme\nCs2=(n1-1)*N2 #total number of channels skipped \nCt2=(n1*M)+Cs2 #total number of channels for 4 skip-1 scheme\nCs3=(n1-1)*N3 #total number of channels skipped \nCt3=(n1*M)+Cs3 #total number of channels for 4 skip-2 scheme\n\n#Result\nprint'Total number ofchannels required for each interleaver band filter'\nprint'(i) 4-skip-0:'\nprint' Ctotal = %d'%Ct1\nprint'(ii) 4-skip-1:'\nprint' Ctotal = %d'%Ct2\nprint'(iii) 4-skip-2:'\nprint' Ctotal = %d'%Ct3",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Total number ofchannels required for each interleaver band filter\n(i) 4-skip-0:\n Ctotal = 32\n(ii) 4-skip-1:\n Ctotal = 39\n(iii) 4-skip-2:\n Ctotal = 46\n"
}
],
"prompt_number": 9
}
],
"metadata": {}
}
]
}
|