summaryrefslogtreecommitdiff
path: root/Nuclear_Physics_by_D._C._Tayal/Chapter7.ipynb
blob: 366baa462d9355047c71458161810f467b310479 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
{
 "metadata": {
  "name": "",
  "signature": "sha256:975fe0f8501e7b87da57a68589b53423b16e7dfd2c8a554c8366dabc3d2d73d7"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter7-Gamma -Radiation"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex1-pg292"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "## Exa7.1: : Page-292 (2011)\n",
      "#find The distance to be moved for obtaining first order Bragg reflection \n",
      "import math\n",
      "h = 6.6261e-034;            ## Planck's constant, joule sec\n",
      "C = 2.998e+08;            ## Velocity of light, metre per sec\n",
      "f = 2.;                    ## Radius of focal circle, metre\n",
      "d = 1.18e-010;            ## Interplaner spacing for quartz crystal, metre\n",
      "E_1 = 1.17*1.6022e-013;        ## Energy of the gamma rays, joule\n",
      "E_2 = 1.33*1.6022e-013;        ## Energy of the gamma rays, joule\n",
      "D = h*C*f*(1./E_1-1./E_2)*1./(2.*d);        ##Distance to be moved for obtaining first order reflection for two different energies, metre\n",
      "print'%s %.2e %s'%(\"\\nThe distance to be moved for obtaining first order Bragg reflection = \",D,\" metre\");\n",
      "\n",
      "## Result\n",
      "## The distance to be moved for obtaining first order Bragg reflection = 1.08e-003 metre "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The distance to be moved for obtaining first order Bragg reflection =  1.08e-03  metre\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex2-pg293"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "## Exa7.2: : Page-293 (2011)\n",
      "#find The energy of the gamma rays\n",
      "import math\n",
      "m_0 = 9.1094e-031;    ## Rest mass of the electron, Kg\n",
      "B_R = 1250e-06;       ## Magnetic field,tesla metre\n",
      "e =  1.6022e-019;     ## Charge of the electron, coulomb\n",
      "C = 3e+08;            ## Velocity of the light, metre per sec\n",
      "E_k = 0.089;          ## Binding energy of the K-shell electron,MeV\n",
      "v = B_R*e/(m_0*math.sqrt(1.+B_R**2.*e**2./(m_0**2*C**2)));  ## Velocity of the photoelectron, metre per sec\n",
      "E_pe = m_0/(1.6022e-013)*C**2*(1./math.sqrt(1-v**2/C**2)-1.);  ## Energy of the photoelectron,MeV\n",
      "E_g = E_pe+E_k;    ## Energy of the gamma rays, MeV\n",
      "print'%s %.3f %s'%(\"\\nThe energy of the gamma rays = \",E_g,\" MeV\");\n",
      "\n",
      "## Result\n",
      "## The energy of the gamma rays = 0.212 MeV "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The energy of the gamma rays =  0.212  MeV\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex3-pg293"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "## Exa7.3: : Page-292 (2011)\n",
      "#find The attenuation of beam of X-rays in passing through human tissue \n",
      "import math\n",
      "a_c = 0.221;      ## Attenuation coefficient, cm^2/g\n",
      "A = (1-math.exp(-0.22))*100.;    ## Attenuation of beam of X-rays in passing through human tissue\n",
      "print'%s %.2f %s'%(\"\\nThe attenuation of beam of X-rays in passing through human tissue = \",math.ceil(A),\" percent\");\n",
      "\n",
      "## Result\n",
      "## The attenuation of beam of X-rays in passing through human tissue = 20 percent "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The attenuation of beam of X-rays in passing through human tissue =  20.00  percent\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex4-pg293"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "## Exa7.4: : Page-293 (2011)\n",
      "#find The partial life time for gamma emission \n",
      "import math\n",
      "alpha_k = 45.;            ## Ratio between decay constants\n",
      "sum_alpha = 0.08;        ## Sum of alphas\n",
      "P = 0.35*1/60.;            ## Probability of the isomeric transition,per hour\n",
      "lambda_g = P*sum_alpha/alpha_k;   ## Decay constant of the gamma radiations, per hour\n",
      "T_g = 1/(lambda_g*365.*24.);        ## Partial life time for gamma emission,years\n",
      "print'%s %.2f %s'%(\"\\nThe partial life time for gamma emission = \",T_g,\" years\");\n",
      "\n",
      "## Result\n",
      "## The partial life time for gamma emission = 11.008 years \n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The partial life time for gamma emission =  11.01  years\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex5-pg294"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "## Exa7.5:  : Page-294 (2011)\n",
      "import math\n",
      "#find The required gamma width\n",
      "A = 11.;            ## Mass number of boron\n",
      "E_g = 4.82;        ## Energy of the gamma radiation, mega electron volts\n",
      "W_g = 0.0675*A**(2./3.)*E_g**3;        ## Gamma width, mega electron volts\n",
      "print'%s %.2f %s'%(\"\\nThe required gamma width = \",W_g,\" MeV\");\n",
      "\n",
      "## Result\n",
      "## The required gamma width = 37.39 MeV \n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The required gamma width =  37.39  MeV\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex8-pg295"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "## Exa7.8:  : Page-295 (2011)\n",
      "#find The excitation energy and The angular momentum\n",
      "import math\n",
      "e = 1.6022e-19;        ## Charge of an electron, coulomb\n",
      "BR = 2370e-06;         ## Magnetic field in an orbit, tesla metre\n",
      "m_0 = 9.1094e-31;      ## Mass of an electron, Kg\n",
      "c = 3e+08;             ## Velocity of light, metre per sec\n",
      "v = 1/math.sqrt((m_0/(BR*e))**2.+1./c**2);      ## velocity of the particle, metre per sec\n",
      "E_e = m_0*c**2*((1.-(v/c)**2)**(-1/2.)-1)/1.6e-13;    ## Energy of an electron, MeV\n",
      "E_b = 0.028;        ## Binding energy, MeV\n",
      "E_g = E_e+E_b;        ## Excitation energy, MeV\n",
      "alpha_k = 0.5;        ## K conversion coefficient\n",
      "Z = 49.;                ## Number of protons\n",
      "alpha = 1./137.;        ## Fine structure constant\n",
      "L = (1/(1.-(Z**3/alpha_k*alpha**4.*(2.*0.511/0.392)**(15./2.))))/2.;    ## Angular momentum\n",
      "l = 1;        ## Orbital angular momentum\n",
      "I = l-1/2.;    ## Parity\n",
      "print(\"\\nFor K-electron state:\" )\n",
      "print' %s %.2f %s  %.2f %s  %.2f %s'%( \"The excitation energy = \",E_g,\" MeV\" and \"The angular momentum = \",math.ceil(L),\" \" and  \"\\nThe parity : \",I,\"\");\n",
      "## Result\n",
      "## For K-electron state:\n",
      "## The excitation energy = 0.393 MeV\n",
      "## The angular momentum = 5\n",
      "## The parity : 0.5 \n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "For K-electron state:\n",
        " The excitation energy =  0.39 The angular momentum =   5.00 \n",
        "The parity :   0.50 \n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex9-pg295"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "## Exa7.9: : Page-295 (2011)\n",
      "#find The radioactive life time\n",
      "import math\n",
      "c = 3e+10;            ## Velocity of light, centimetre per sec\n",
      "R_0 = 1.4e-13;        ## Distance of closest approach, centimetre \n",
      "alpha = 1./137.;        ## Fine scattering constant\n",
      "A = 17.;                ## Mass number\n",
      "E_g = 5.*1.6e-06;        ## Energy of gamma transition, ergs\n",
      "h_cut = 1.054571628e-27;        ## Reduced planck constant, ergs per sec\n",
      "D = c/4.*R_0**2.*alpha*(E_g/(h_cut*c))**3.*A**(2./3.);        ## Disintegration constant, per sec\n",
      "tau = 1/D;        ## Radioactive lifr\\e time, sec\n",
      "print'%s %.1e %s'%(\"\\nThe radioactive life time = \",tau,\" sec\");\n",
      "\n",
      "## Result\n",
      "## The radioactive life time = 9e-018 sec \n",
      "print(\"error in answer due to round off error\")\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The radioactive life time =  8.7e-18  sec\n",
        "error in answer due to round off error\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex10-pg296"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "## Exa7.10: : Page-296 (2011)\n",
      "#find The possible multipolarities are\n",
      "import math\n",
      "l = 2,3,4\n",
      "print(\"\\nThe possible multipolarities are \")\n",
      "for l in range( 2,4):\n",
      "    if l == 2:\n",
      "        print'%s %.2f %s'%(\"E\",l,\" \" );\n",
      "    elif l == 3:\n",
      "        print'%s %.2f %s'%(\" M\",l,\" \");\n",
      "    elif l == 4:\n",
      "        print'%s %.2f %s'%(\" and E \",l,\" \");\n",
      "    \n",
      "\n",
      "for l in range( 2,4):\n",
      "    if l == 2 :\n",
      "     print'%s %.2f %s'%(\"\\nThe transition E\",l,\" dominates\");\n",
      "    \n",
      "\n",
      "\n",
      "## Result\n",
      "## The possible multipolarities are E2, M3 and E4\n",
      "## The transition E2 dominates \n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The possible multipolarities are \n",
        "E 2.00  \n",
        " M 3.00  \n",
        "\n",
        "The transition E 2.00  dominates\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex13-pg297"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "## Exa7.13: : Page-297 (2011)\n",
      "#find The relative source absorber velocity\n",
      "import math\n",
      "E_0 = 0.014*1.6022e-13;   ## Energy of the gamma rays, joule\n",
      "A = 57.;                   ## Mass number\n",
      "m = 1.67e-27;             ## Mass of each nucleon, Kg\n",
      "c = 3e+08;                ## Velocity of light, metre per sec\n",
      "N = 1000.;                 ## Number of atoms in the lattice\n",
      "v = E_0/(A*N*m*c);        ## Ralative velocity, metre per sec\n",
      "print'%s %.2f %s'%(\"\\nThe relative source absorber velocity = \",v,\" m/s\");\n",
      "\n",
      "## Result\n",
      "## The relative source absorber velocity = 0.079 m/s \n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The relative source absorber velocity =  0.08  m/s\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex14-pg297"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "## Exa7.14: : Page-297 (2011)\n",
      "#find The required frequency shift of the photon\n",
      "import math\n",
      "g = 9.8;            ## Acceleration due to gravity, metre per square sec\n",
      "c = 3e+08;                ## Velocity of light, metre per sec\n",
      "y = 20.;                ## Vertical distance between source and absorber, metre\n",
      "delta_v = g*y/c**2;        ## Frequency shift\n",
      "print'%s %.2e %s'%(\"\\nThe required frequency shift of the photon =  \", delta_v,\"\");\n",
      "\n",
      "## Result\n",
      "## The required frequency shift of the photon = 2.18e-015  \n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The required frequency shift of the photon =   2.18e-15 \n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex15-pg246"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "## Exa6.15: : Page-246 (2011)\n",
      "#find they are parallel spin or anti\n",
      "import math\n",
      "import numpy\n",
      "a='antiparallel spin'\n",
      "b='parallel spin'\n",
      "S=([a, b])\n",
      "\n",
      "\n",
      "for i in range  (0,1):\n",
      "    if S[i] == 'antiparallel spin' :\n",
      "       print(\"\\nFor Fermi types :\")\n",
      "       print(\"\\n\\n The selection rules for allowed transitions are :  \\n\\tdelta I is zero \\n\\tdelta pi is plus \\nThe emited neutrino and electron have %s\")\n",
      "       print \"S(i,1)\"\n",
      "    elif S[i] == 'parallel spin':\n",
      "       print(\"\\nFor Gamow-Teller types :\")\n",
      "       print(\"\\nThe selection rules for allowed transitions are : \\n\\tdelta I is zero,plus one and minus one\\n\\tdelta pi is plus\\nThe emited neutrino and electron have %s\")\n",
      "       print(\"S(i,1)\") \n",
      "    \n",
      "\n",
      "## Calculation of ratio of transition probability\n",
      "M_F = 1.;    ## Matrix for Fermi particles\n",
      "g_F = 1.;        ## Coupling constant of fermi particles\n",
      "M_GT = 5/3.;        ## Matrix for Gamow Teller\n",
      "g_GT = 1.24;        ## Coupling constant of Gamow Teller\n",
      "T_prob = g_F**2*M_F/(g_GT**2*M_GT);    ## Ratio of transition probability\n",
      "## Calculation of Space phase factor\n",
      "e = 1.6e-19;        ## Charge of an electron, coulomb\n",
      "c = 3e+08;            ## Velocity of light, metre per sec\n",
      "K = 8.99e+9;        ## Coulomb constant\n",
      "R_0 = 1.2e-15;        ## Distance of closest approach, metre\n",
      "A = 57.;            ## Mass number\n",
      "Z = 28.;            ## Atomic number \n",
      "m_n = 1.6749e-27;    ## Mass of neutron, Kg\n",
      "m_p = 1.6726e-27;    ## Mass of proton, Kg\n",
      "m_e = 9.1e-31;        ## Mass of electron. Kg\n",
      "E_1 = 0.76;         ## First excited state of nickel\n",
      "delta_E = ((3*e**2*K/(5*R_0*A**(1/3.))*((Z+1.)**2-Z**2))-(m_n-m_p)*c**2)/1.6e-13;         ## Mass difference, mega electron volts\n",
      "E_0 = delta_E-(2*m_e*c**2)/1.6e-13;    ## End point energy, mega electron volts\n",
      "P_factor = (E_0-E_1)**5/E_0**5;    ## Space phase factor \n",
      "print'%s %.2f %s %.2f %s '%(\"\\nThe ratio of transition probability =\",T_prob,\"\"and\"\\nThe space phase factor =\",P_factor,\"\");\n",
      " \n",
      "## Result\n",
      "## The emited neutrino and electron have antiparallel spin\n",
      "## For Gamow-Teller types :\n",
      "## The selection rules for allowed transitions are : \n",
      "##\tdelta I is zero,plus one and minus one\n",
      "##\tdelta pi is plus\n",
      "## The emited neutrino and electron have parallel spin\n",
      "## The ratio of transition probability = 0.39\n",
      "## The space phase factor = 0.62 a"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "For Fermi types :\n",
        "\n",
        "\n",
        " The selection rules for allowed transitions are :  \n",
        "\tdelta I is zero \n",
        "\tdelta pi is plus \n",
        "The emited neutrino and electron have %s\n",
        "S(i,1)\n",
        "\n",
        "The ratio of transition probability = 0.39  0.62  \n"
       ]
      }
     ],
     "prompt_number": 2
    }
   ],
   "metadata": {}
  }
 ]
}