summaryrefslogtreecommitdiff
path: root/Nuclear_Physics_by_D._C._Tayal/Chapter6.ipynb
blob: c8a7f4f45ebdf3b9aa0be4c48f67aa3cb78b9a40 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
{
 "metadata": {
  "name": "",
  "signature": "sha256:4015b0a9a33cac1d31d06283c1020edbd79893138244c7d49c1c64131de1b42b"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter6-Beta-Decay"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex1-pg240"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "## Exa6.1: : Page- 240 (2011)\n",
      "#find The rate at which energy is emitted\n",
      "T = 5*24*60*60;    ## Half life of the substance, sec\n",
      "N = 6.023e+026*4e-06/210;        ## Number of atoms\n",
      "D = 0.693/T;           ## Disintegration constant, per sec\n",
      "K = D*N;                ## Rate of disintegration, \n",
      "E = 0.34*1.60218e-013;        ## Energy of the beta particle, joule\n",
      "P = E*K;                    ##   Rate at which energy is emitted, watt\n",
      "print'%s %.2f %s'%(\"\\nThe rate at which energy is emitted = \",P,\" watt\");\n",
      "\n",
      "## Result\n",
      "## The rate at which energy is emitted = 1 watt \n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The rate at which energy is emitted =  1.00  watt\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex2-pg241"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "## Exa6.2 : : Page-241 (2011)\n",
      "#find The magnetic field perpendicular to the beam of the particle \n",
      "M_0 = 9.10939e-031;         ## Rest mass of the electron, Kg\n",
      "C = 2.92e+08;            ## Velocity of the light, metre per sec\n",
      "E = 1.71*1.60218e-013;        ## Energy of the beta particle, joule\n",
      "e = 1.60218e-019;                ## Charge of the electron, C \n",
      "R = 0.1;                     ## Radius of the orbit, metre\n",
      "B = M_0*C*(E/(M_0*C**2)+1)*1/(R*e); ## Magnetic field perpendicular to the beam  of the particle, weber per square metre\n",
      "\n",
      "print'%s %.2f %s'%(\"\\nThe magnetic field perpendicular to the beam of the particle = \",B,\" Wb/square-metre\");\n",
      "\n",
      "## Result\n",
      "## The magnetic field perpendicular to the beam of the particle = 0.075 Wb/square-metre \n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The magnetic field perpendicular to the beam of the particle =  0.08  Wb/square-metre\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex3-pg241"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "##  Exa6.3 : : Page-241 (2011)\n",
      "#find The energy of the electron and The energy of the converted gamma ray photon \n",
      "import math\n",
      "m_0 = 9.10963e-031;         ## Rest mass of the electron, Kg\n",
      "e = 1.60218e-019;           ## Charge of the electron, C\n",
      "c = 2.9979e+08;            ## Velocity of the light, metre per sec\n",
      "BR = 3381e-006;     ## Field-radius product, tesla-m\n",
      "E_k = 37.44;    ## Binding energy of k-electron\n",
      "v = 1/math.sqrt((m_0/(BR*e))**2+1/c**2); ## Velocity of the converson electron, m/s\n",
      "E = m_0*c**2*(1/math.sqrt(1-v**2/c**2)-1.)/(e*1e+003);   ## Energy of the electron, keV \n",
      "E_C = E+E_k;            ## Energy of the converted gamma ray photon, KeV\n",
      "print'%s %.2f %s  %.2f %s'%(\"\\nThe energy of the electron = \",E,\" keV \" and \" The energy of the converted gamma ray photon =\", E_C,\" keV\");\n",
      "\n",
      "## Result\n",
      "## The energy of the electron = 624.11 keV \n",
      "## The energy of the converted gamma ray photon = 661.55 keV \n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The energy of the electron =  624.11  The energy of the converted gamma ray photon =  661.55  keV\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex4-pg241"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "## Exa6.4 : : Page-241 (2011)\n",
      "#find The rest energy carried out by the neutrino\n",
      "import math\n",
      "E = 18.1;                ## Energy carried by beta particle, keV \n",
      "E_av = E/3.;               ## Average energy carried away by beta particle, keV\n",
      "E_r = E-E_av;            ## The rest energy carried out by the neutrino, keV\n",
      "\n",
      "print'%s %.2f %s'%(\"\\nThe rest energy carried out by the neutrino : \",E_r,\" KeV\");\n",
      "\n",
      "## Result\n",
      "## The rest energy carried out by the neutrino : 12.067 KeV \n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The rest energy carried out by the neutrino :  12.07  KeV\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex5-pg242"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "## Exa6.5: : Page-242(2011)\n",
      "#find The maximum energy available to the electrons in the beta decay\n",
      "import math\n",
      "M_Na = -8420.40;        ## Mass of sodium 24, keV\n",
      "M_Mg = -13933.567;      ## Mass of magnesium 24, keV\n",
      "E = (M_Na-M_Mg)/1000.;    ## Energy of the electron, MeV\n",
      "print'%s %.2f %s'%(\"\\nThe maximum energy available to the electrons in the beta decay = \",E,\" MeV\");\n",
      "\n",
      "## Result\n",
      "## The maximum energy available to the electrons in the beta decay = 5.513 MeV \n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The maximum energy available to the electrons in the beta decay =  5.51  MeV\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex6-pg242"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "## Exa6.6: : Page-242 (2011)\n",
      "#find The linear momentum of neutrino and The linear momentum of beta particle\n",
      "import math\n",
      "c = 1.;  ## For simplicity assume speed of light to be unity, m/s\n",
      "E_0 = 0.155;        ## End point energy, mega electron volts\n",
      "E_beta = 0.025;        ## Energy of beta particle, mega electron volts\n",
      "E_v = E_0-E_beta;        ## Energy of the neutrino, mega electron volts\n",
      "p_v = E_v/c;            ## Linear momentum of neutrino, mega electron volts per c\n",
      "m = 0.511;            ## Mass of an electron, Kg\n",
      "M = 14*1.66e-27;        ## Mass of carbon 14,Kg\n",
      "c = 3e+8;                ## Velocity of light, metre per sec\n",
      "e = 1.60218e-19;            ## Charge of an electron, coulomb\n",
      "p_beta = math.sqrt(2*m*E_beta);    ## Linear momentum of beta particle, MeV/c\n",
      "sin_theta = p_beta/p_v*math.sin(45/57.3);    ## Sine of angle theta\n",
      "p_R = p_beta*math.cos(45/57.3)+p_v*math.sqrt(1-sin_theta**2);  ## Linear momemtum of recoil nucleus, MeV/c\n",
      "E_R = (p_R*1.6e-13/2.9979e+08)**2/(2.*M*e);  ## Recoil energy of product nucleus, MeV\n",
      "print'%s %.2f %s %.2f %s %.2f %s '%(\"\\nThe linear momentum of neutrino = \",p_v,\" MeV/c\" and \"The linear momentum of beta particle =\",p_beta,\" MeV/c\" and \"The energy of the recoil nucleus = \",E_R,\" eV\")\n",
      "\n",
      "## Result\n",
      "## The linear momentum of neutrino = 0.13 MeV/c \n",
      "## The linear momentum of beta particle = 0.1598 MeV/c \n",
      "## The energy of the recoil nucleus = 1.20 eV \n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The linear momentum of neutrino =  0.13 The linear momentum of beta particle = 0.16 The energy of the recoil nucleus =  1.20  eV \n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex7-pg242"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "## Exa6.7: : Page-242 (2011)\n",
      "#find The energy of the beta particle and The ratio of beta particle energy with end point energy\n",
      "import math\n",
      "N = 3.7e+10*60;        ## Number of disintegration, per sec\n",
      "H = 0.0268*4.182;        ## Heat produced at the output, joule\n",
      "E = H/(N*1.6e-013);        ## Energy of the beta particle, joule\n",
      "M_Bi = -14.815;            ## Mass of Bismuth, MeV\n",
      "M_Po = -15.977;            ## Mass of polonium, MeV\n",
      "E_0 = M_Bi-M_Po;            ## End point energy, MeV\n",
      "E_ratio = E/E_0;            ## Ratio of beta particle energy with end point energy\n",
      "print'%s %.2f %s  %.2f %s '%(\"\\nThe energy of the beta particle = \",E,\" MeV\" and \"The ratio of beta particle energy with end point energy =\" ,E_ratio,\"\");\n",
      "\n",
      "## Result\n",
      "## The energy of the beta particle = 0.316 MeV \n",
      "## The ratio of beta particle energy with end point energy = 0.272  \n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The energy of the beta particle =  0.32 The ratio of beta particle energy with end point energy =  0.27  \n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex8-pg243"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "## Exa6.8: : Page-243 (2011)\n",
      "#find The parity of the 2.9 MeV level in be-8 and The threshold energy for lithium 7 neutron capture\n",
      "import math\n",
      "l = 2.;    ## Orbital angular momentum quantum number\n",
      "P = (+1)**2*(-1)**l;    ## Parity of the 2.9 MeV level in Be-8\n",
      "M_Li = 7.0182;        ## Mass of lithium, MeV\n",
      "M_Be = 7.998876;        ## Mass of beryllium, MeV\n",
      "m_n = 1.;                ## Mass of neutron, MeV\n",
      "E_th = (M_Li+m_n-M_Be)*931.5;    ## Threshold energy, MeV\n",
      "print'%s %.2f %s %.2f %s'%(\"\\nThe parity of the 2.9 MeV level in be-8 = \",+P,\" \" and\"The threshold energy for lithium 7 neutron capture = \",E_th,\" MeV\");\n",
      "\n",
      "## Result\n",
      "## The parity of the 2.9 MeV level in be-8 = +1 \n",
      "## The threshold energy for lithium 7 neutron capture = 18 MeV \n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The parity of the 2.9 MeV level in be-8 =  1.00 The threshold energy for lithium 7 neutron capture =  18.00  MeV\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex9-pg243"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "##Page-243(2011)\n",
      "import math\n",
      "import numpy\n",
      "#find  pairs are stable or not\n",
      "M =numpy.zeros((4,2));\n",
      "M[0,0] = 7.0182*931.5;    ## Mass of lithium, MeV\n",
      "M[0,1] = 7.0192*931.5;    ## Mass of beryllium, MeV\n",
      "M[1,0] = 13.0076*931.5;    ## Mass of carbon, MeV\n",
      "M[1,1] = 13.0100*931.5;    ## Mass of nitrogen, MeV\n",
      "M[2,0] = 19.0045*931.5;    ## Mass of fluorine, MeV\n",
      "M[2,1] = 19.0080*931.5;    ## Mass of neon, MeV\n",
      "M[3,0] = 33.9983*931.5;    ## Mass of phosphorous, MeV\n",
      "M[3,1] = 33.9987*931.5;    ## Mass of sulphur, MeV\n",
      "j = 0; \n",
      "## Check the stability !!!!\n",
      "for i in range  (0,3):\n",
      "    if round (M[i,j+1]-M[i,j]) == 1:\n",
      "        print(\"\\n From pair a :\")\n",
      "        print(\"\\n         Be(4,7) is unstable\");\n",
      "    elif round (M[i,j+1]-M[i,j]) == 2:\n",
      "        print(\"\\n From pair b :\")\n",
      "        print(\"\\n         N(7,13) is unstable\");\n",
      "    elif round (M[i,j+1]-M[i,j]) == 3:\n",
      "        print(\"\\n From pair c :\")\n",
      "        print(\"\\n         Ne(10,19) is unstable\");\n",
      "    elif round (M[i,j+1]-M[i,j]) == 0:\n",
      "        print(\"\\n From pair d :\")\n",
      "        print(\"\\n         P(15,34) is unstable\");\n",
      "    \n",
      "\n",
      "\n",
      "## Result\n",
      "## \n",
      "## From pair a :\n",
      "##         Be(4,7) is unstable\n",
      "## From pair b :\n",
      "##         N(7,13) is unstable\n",
      "## From pair c :\n",
      "##         Ne(10,19) is unstable\n",
      "## From pair d :\n",
      "##         P(15,34) is unstable "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        " From pair a :\n",
        "\n",
        "         Be(4,7) is unstable\n",
        "\n",
        " From pair b :\n",
        "\n",
        "         N(7,13) is unstable\n",
        "\n",
        " From pair c :\n",
        "\n",
        "         Ne(10,19) is unstable\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex10-pg244"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "## Exa6.10: : Page-244 (2011)\n",
      "#find The half life of H3 \n",
      "import math\n",
      "tau_0 = 7000.;        ## Time constant, sec\n",
      "M_mod_sqr = 3.;        ## Nuclear matrix\n",
      "E_0 = 0.018;        ## Energy of beta spectrum, MeV \n",
      "ft = 0.693*tau_0/M_mod_sqr;   ## Comparative half life\n",
      "fb = 10**(4.0*math.log10(E_0)+0.78+0.02);    ##\n",
      "t = 10**(math.log10(ft)-math.log10(fb));   ## Half life of H3, sec\n",
      "print'%s %.2f %s'%(\"\\nThe half life of H3 = \",t,\" sec\");\n",
      "\n",
      "## Result\n",
      "## The half life of H3 = 2.44e+009 sec "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The half life of H3 =  2441293526.34  sec\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex11-pg244"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "## Exa6.11: : Page-244 (2011)\n",
      "import math\n",
      "#find 92 percent beta emission  \n",
      "t_p = 33./0.92*365.*84800.;    ## Partial half life for beta emission, sec\n",
      "E_0 = 0.51;        ## Kinetic energy\n",
      "Z = 55.;            ## Atomic number of cesium\n",
      "log_fb = 4.0*math.log10(E_0)+0.78+0.02*Z-0.005*(Z-1)*math.log10(E_0);    ## Comparitive half life\n",
      "log_ft1 = log_fb+math.log10(t_p);     ## Forbidden tansition\n",
      "## For 8 percent beta minus emission\n",
      "t_p = 33./0.08*365.*84800.;    ## Partial half life, sec\n",
      "E_0 = 1.17;        ## Kinetic energy\n",
      "Z = 55;            ## Atomic energy\n",
      "log_fb = 4.0*math.log10(E_0)+0.78+0.02*Z-0.005*(Z-1)*math.log10(E_0);    ## Comparitive half life\n",
      "log_ft2 = log_fb+math.log10(t_p);    ## Forbidden transition\n",
      "## Check the degree of forbiddenness !!!!!\n",
      "if log_ft1 <= 10: \n",
      "    print(\"\\nFor 92 percent beta emission :\")\n",
      "    print(\"\\n\\tTransition is once forbidden and parity change\");\n",
      "\n",
      "if log_ft2 >= 10:\n",
      "    print(\"\\nFor 8 percent beta emission :\")\n",
      "    print(\"\\n\\t ransition is twice forbidden and no parity change\");\n",
      "\n",
      "\n",
      "## Result\n",
      "## For 92 percent beta emission :\n",
      "##\tTransition is once forbidden and parity change\n",
      "## For 8 percent beta emission :\n",
      "##\tTransition is twice forbidden and no parity change\n",
      " "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "For 92 percent beta emission :\n",
        "\n",
        "\tTransition is once forbidden and parity change\n",
        "\n",
        "For 8 percent beta emission :\n",
        "\n",
        "\t ransition is twice forbidden and no parity change\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex12-pg244"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "## Exa6.12: : Page-244(2011)\n",
      "#find The value of coupling constant and The ratio of coupling constant\n",
      "import math\n",
      "h_kt = 1.05457e-34;    ## Reduced planck's constant, joule sec\n",
      "c = 3e+08;             ## velocity of light, metre per sec\n",
      "m_e = 9.1e-31;         ## Mass of the electron, Kg\n",
      "ft_O = 3162.28;        ## Comparative half life for oxygen\n",
      "ft_n = 1174.90;        ## Comparative half life for neutron\n",
      "M_f_sqr = 2.            ## Matrix element\n",
      "g_f = math.sqrt(2*math.pi**3*h_kt**7.*math.log(2.)/(m_e**5*c**4*ft_O*M_f_sqr));    ## Coupling constant, joule cubic metre\n",
      "C_ratio = (2.*ft_O/(ft_n)-1.)/3.;    ## Ratio of coupling strength\n",
      "print'%s %.3e %s %.2f %s'%(\"\\nThe value of coupling constant = \",g_f,\" joule cubic metre\" and \"The ratio of coupling constant = \",C_ratio,\"\");\n",
      "\n",
      "## Result\n",
      "## The value of coupling constant = 1.3965e-062 joule cubic metre\n",
      "## The ratio of coupling constant = 1.461 "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The value of coupling constant =  1.397e-62 The ratio of coupling constant =  1.46 \n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex13-pg245"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "## Exa6.13: : Page-245 (2011)\n",
      "#find The relative capture rate in holmium 161\n",
      "import math\n",
      "Q_EC = 850.;        ## Q value for holmium 161, keV\n",
      "B_p = 2.0;    ## Binding energy for p-orbital electron, keV\n",
      "B_s = 1.8;        ## Binding energy for s-orbital electron, keV\n",
      "M_ratio = 0.05*(Q_EC-B_p)**2./(Q_EC-B_s)**2;    ## Matrix ratio\n",
      "Q_EC = 2.5;        ## Q value for holmium 163, keV\n",
      "C_rate = M_ratio*(Q_EC-B_s)**2./(Q_EC-B_p)**2.*100.;    ## The relative capture rate in holmium, percent\n",
      "print'%s %.2f %s'%(\"\\nThe relative capture rate in holmium 161 = \",C_rate,\" percent\");\n",
      "\n",
      "## Result\n",
      "## The relative capture rate in holmium 161 = 9.8 percent "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The relative capture rate in holmium 161 =  9.80  percent\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex14-pg246"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "## Exa6.14: : Page-246 (2011)\n",
      "#find The average energy of beta particles\n",
      "import math\n",
      "t_half = 12.5*365*24;        ## Half life of hydrogen 3, hour\n",
      "D = math.log(2)/t_half;      ## Decay constant, per hour\n",
      "N_0 = 6.023e+26;             ## Avogadro's number, per mole\n",
      "m = 0.1e-03;                ## Mass of tritium, Kg\n",
      "dN_by_dt = D*m*N_0/3.;  ## Decay rate, per hour\n",
      "H = 21*4.18;                ## Heat produed, joule \n",
      "E = H/dN_by_dt;             ## The average energy of the beta particle, joule\n",
      "print'%s %.2e %s  %.2f %s'%(\"\\nThe average energy of beta particles =\",E,\"joule = \",E/1.6e-016,\" keV\");\n",
      "\n",
      "## Result\n",
      "## The average energy of beta particles = 6.91e-016 joule = 4.3 keV \n",
      " "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The average energy of beta particles = 6.91e-16 joule =   4.32  keV\n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex15-pg246"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "## Exa6.15: : Page-246 (2011)\n",
      "#find antiparallel spin and parallel spin\n",
      "import math\n",
      "import numpy\n",
      "a='antiparallel spin'\n",
      "b='parallel spin'\n",
      "S=([a, b])\n",
      "\n",
      "\n",
      "for i in range  (0,1):\n",
      "    if S[i] == 'antiparallel spin' :\n",
      "       print(\"\\nFor Fermi types :\")\n",
      "       print(\"\\n\\n The selection rules for allowed transitions are :  \\n\\tdelta I is zero \\n\\tdelta pi is plus \\nThe emited neutrino and electron have %s\")\n",
      "       print \"S(i,1)\"\n",
      "    elif S[i] == 'parallel spin':\n",
      "       print(\"\\nFor Gamow-Teller types :\")\n",
      "       print(\"\\nThe selection rules for allowed transitions are : \\n\\tdelta I is zero,plus one and minus one\\n\\tdelta pi is plus\\nThe emited neutrino and electron have %s\")\n",
      "       print(\"S(i,1)\") \n",
      "    \n",
      "\n",
      "## Calculation of ratio of transition probability\n",
      "M_F = 1.;    ## Matrix for Fermi particles\n",
      "g_F = 1.;        ## Coupling constant of fermi particles\n",
      "M_GT = 5/3.;        ## Matrix for Gamow Teller\n",
      "g_GT = 1.24;        ## Coupling constant of Gamow Teller\n",
      "T_prob = g_F**2*M_F/(g_GT**2*M_GT);    ## Ratio of transition probability\n",
      "## Calculation of Space phase factor\n",
      "e = 1.6e-19;        ## Charge of an electron, coulomb\n",
      "c = 3e+08;            ## Velocity of light, metre per sec\n",
      "K = 8.99e+9;        ## Coulomb constant\n",
      "R_0 = 1.2e-15;        ## Distance of closest approach, metre\n",
      "A = 57.;            ## Mass number\n",
      "Z = 28.;            ## Atomic number \n",
      "m_n = 1.6749e-27;    ## Mass of neutron, Kg\n",
      "m_p = 1.6726e-27;    ## Mass of proton, Kg\n",
      "m_e = 9.1e-31;        ## Mass of electron. Kg\n",
      "E_1 = 0.76;         ## First excited state of nickel\n",
      "delta_E = ((3*e**2*K/(5*R_0*A**(1/3.))*((Z+1.)**2-Z**2))-(m_n-m_p)*c**2)/1.6e-13;         ## Mass difference, mega electron volts\n",
      "E_0 = delta_E-(2*m_e*c**2)/1.6e-13;    ## End point energy, mega electron volts\n",
      "P_factor = (E_0-E_1)**5/E_0**5;    ## Space phase factor \n",
      "print'%s %.2f %s %.2f %s '%(\"\\nThe ratio of transition probability =\",T_prob,\"\"and\"\\nThe space phase factor =\",P_factor,\"\");\n",
      " \n",
      "## Result\n",
      "## The emited neutrino and electron have antiparallel spin\n",
      "## For Gamow-Teller types :\n",
      "## The selection rules for allowed transitions are : \n",
      "##\tdelta I is zero,plus one and minus one\n",
      "##\tdelta pi is plus\n",
      "## The emited neutrino and electron have parallel spin\n",
      "## The ratio of transition probability = 0.39\n",
      "## The space phase factor = 0.62 a"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "For Fermi types :\n",
        "\n",
        "\n",
        " The selection rules for allowed transitions are :  \n",
        "\tdelta I is zero \n",
        "\tdelta pi is plus \n",
        "The emited neutrino and electron have %s\n",
        "S(i,1)\n",
        "\n",
        "The ratio of transition probability = 0.39  0.62  \n"
       ]
      }
     ],
     "prompt_number": 13
    }
   ],
   "metadata": {}
  }
 ]
}