summaryrefslogtreecommitdiff
path: root/Nuclear_Physics_by_D._C._Tayal/Chapter5.ipynb
blob: 8e2edd818a1c518b3772c34c46ea99a1b5c6979a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
{
 "metadata": {
  "name": "",
  "signature": "sha256:5bd75b768cbef982b8c705dbf643c0d6d3b446f1e0997915eea25d6d1e7b9a2f"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter5-Alpha particles"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex1-pg203"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "## Exa5.1 : : Page 203 (2011)\n",
      "#find Disintegration energy and Barrier height for alpha-particle\n",
      "import math\n",
      "E_a = 8.766;    ## Energy of the alpha particle, MeV\n",
      "A = 212.;          ## Atomic mass of Po-212, amu\n",
      "M_a = 4.;         ## Atomic mass of alpha particle, amu\n",
      "e = 1.6e-019;        ## Charge of an electron, coulomb\n",
      "Z = 82.;                ## Atomic number of Po-212\n",
      "R_0 = 1.4e-015;        ## Distance of closest approach,metre\n",
      "K = 8.99e+09;            ## Coulomb constant\n",
      "E = E_a*A/(A-M_a);    ## Disintegration energy, mega electron volts\n",
      "B_H = 2.*Z*e**2.*K/(R_0*A**(1./3.)*1.6*10**-13.);    ## Barrier height for an alpha particle within the nucleus, MeV\n",
      "print\"%s %.3f %s  %.3f %s \"%(\"Disintegration energy :\",E,\" MeV Barrier height for alpha-particle: \",B_H,\" MeV\");\n",
      "\n",
      "## Result\n",
      "## Disintegration energy : 8.935 MeV \n",
      "## Barrier height for alpha-particle: 28.26 MeV "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Disintegration energy : 8.935  MeV Barrier height for alpha-particle:   28.259  MeV \n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex2-pg203"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "## Exa5.2 : : Page 203 (2011)\n",
      "## We have to make calculation for alpha particle and for  proton\n",
      "import math\n",
      "E_a = 8.766;     ## Energy of the alpha particle, mega electron volts\n",
      "A_Bi = 209.;      ## Atomic mass of Bi-209, atomic mass unit\n",
      "A_a = 4.;         ## Atomic mass of alpha particle, atomic mass unit\n",
      "A_p = 1.;         ## Atomic mass of proton, atomic mass unit\n",
      "e = 1.6e-019;    ## Charge of an electron, coulomb\n",
      "Z = 83.;          ## Atomic number of bismuth\n",
      "R_0 = 1.4e-015;  ## Distance of closest approach,metre\n",
      "K = 8.99e+09;    ## Coulomb constant\n",
      "B_H_a = 2.*Z*e**2.*K/(R_0*1.6e-013*(A_Bi**(1/3.)+A_a**(1/3.)));    ## Barrier height for an alpha particle, mega electron volts\n",
      "B_H_p = 1.*Z*e**2.*K/(R_0*1.6e-013*(A_Bi**(1/3.)+A_p**(1/3.)));    ## Barrier height for proton, mega electron volts\n",
      "print'%s %.2f %s %.2f %s'%(\"Barrier height for the alpha particle =\",B_H_a,\" MeV Barrier height for the proton = \",B_H_p,\" MeV\");\n",
      "\n",
      "## Result\n",
      "## Barrier height for the alpha particle = 22.67 MeV \n",
      "## Barrier height for the proton = 12.30 MeV "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Barrier height for the alpha particle = 22.67  MeV Barrier height for the proton =  12.30  MeV\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex3-pg203"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "## Exa5.3 : : Page 203 (2011)\n",
      "## We have also calculate the value of magnetic field in a particular orbit. \n",
      "import math\n",
      "C = 3e+08;                ## Velocity of light, m/S\n",
      "M_0 = 6.644e-027*(C)**2/(1.60218e-013);        ## Rest mass of alpha particle, MeV\n",
      "T = 5.998;                ## Kinetic energy of alpha particle emitted by Po-218\n",
      "q = 2*1.60218e-019;        ## Charge of alpha particle, C\n",
      "V = math.sqrt(C**2*T*(T+2*M_0)/(T+M_0)**2);            ## Velocity of alpha particle,metre per sec\n",
      "B_r = V*M_0*(1.60218e-013)/(C**2.*q*math.sqrt(1-V**2./C**2.));                ## magnetic field in a particular orbit, Web per mtere\n",
      "print'%s %.2e %s %.2f %s '%(\"The velocity of alpha particle : \",V,\" m/sThe magnetic field in a particular orbit :\",B_r,\" Wb/m\");\n",
      "\n",
      "## Result\n",
      "## The velocity of alpha particle : 1.699e+007 m/s\n",
      "## The magnetic field in a particular orbit : 0.3528 Wb/m"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The velocity of alpha particle :  1.70e+07  m/sThe magnetic field in a particular orbit : 0.35  Wb/m \n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex4-pg204"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "## Exa5.4: : Page 204 (2011)\n",
      "#find The probability of leakage of alpha-particle through potential barrier\n",
      "import math\n",
      "a = 10**-14;        ## Width of the  potential barrier, m\n",
      "E = 5*1.60218e-013;        ## Energy of the alpha particle, joule\n",
      "V = 10*1.60218e-013;        ## Potential height, joule\n",
      "M_0 = 6.644e-027;        ## Rest mass of the alpha particle, joule\n",
      "h_red = 1.05457e-034;        ## Reduced value of Planck's constant,joule sec \n",
      "T = 4*math.exp(-2*a*math.sqrt(2*M_0*(V-E)/h_red**2));   ## Probability of leakage through through potential barrier\n",
      "print'%s %.2e %s'%(\"The probability of leakage of alpha-particle through potential barrier =  \",T,\"\");\n",
      "\n",
      "## Result\n",
      "## The probability of leakage of alpha-particle through potential barrier = 1.271e-008  "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The probability of leakage of alpha-particle through potential barrier =   1.27e-08 \n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex6-pg204"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "## Exa5.6: : Page 204 (2011)\n",
      "#find The disintegration constant increases \n",
      "import math\n",
      "Z_D = 82.;    ## Atomic number of Po\n",
      "E_Po210 = 5.3;    ## Alpha-source for Po210, MeV\n",
      "E_Po214 = 7.7;    ## Alpha-source for Po214, MeV\n",
      "log_lambda_Po210 = -1*1.72*Z_D*E_Po210**(-1/2.);    \n",
      "log_lambda_Po214 = -1*1.72*Z_D*E_Po214**(-1/2.);    \n",
      "delta_OM_t = log_lambda_Po214 - log_lambda_Po210;    ## Difference in order of magnitude of life times of Po214 and Po210\n",
      "print'%s %.2d %s'%(\"The disintegration constant increases by a factor of some 10^ \" ,delta_OM_t,\"\");\n",
      "\n",
      "## Result\n",
      "## The disintegration constant increases by a factor of some 10^10  "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The disintegration constant increases by a factor of some 10^  10 \n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex8-pg205"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "## Exa5.8:  : Page 205 (2011)\n",
      "#find The half life of Pu \n",
      "import math\n",
      "N = 120.1*6.023e+023/239.;    ## Number of Pu nuclei\n",
      "P_rel = 0.231;        ## Power released, watt\n",
      "E_rel = 5.323*1.6026e-13;        ## Energy released, joule\n",
      "decay_rate = P_rel/E_rel;        ## Decay rate of Pu239, per hour\n",
      "t_half = N*math.log(2)/(decay_rate*365.*86400.);    ## Half life of Po239, sec\n",
      "print\"%s %.2e %s\"%(\"The half life of Pu = \",t_half,\" yr\");\n",
      "\n",
      "## Result\n",
      "## The half life of Pu = 2.46e+004 yr "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The half life of Pu =  2.46e+04  yr\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex9-pg205"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "## Exa5.9 : : Page 205(2011)\n",
      "#find The slope of alpha decay energy versus atomic number\n",
      "import math\n",
      "a_v = 14.;        ## Volume energy constant, MeV\n",
      "a_s = 13.;        ## Surface energy constant, MeV\n",
      "a_c = 0.60;      ## Coulomb energy constant, MeV\n",
      "a_a = 19.;        ## Asymmetric energy constant, MeV\n",
      "A = 202.;        ## Mass number\n",
      "Z = 82;         ##  Atomic number \n",
      "dE_by_dN = -8/9*a_s/A**(4/3.)-4/3.*a_c*Z/A**(4/3.)*(1-4.*Z/(3.*A))-16.*a_a*Z/A**2.*(1.-2.*Z/A);        ## Slope, mega electron volts per nucleon\n",
      "print'%s %.2f %s'%(\"The slope of alpha decay energy versus atomic number = \",dE_by_dN,\" MeV/nucleon\");\n",
      "\n",
      "## Result\n",
      "## The slope of alpha decay energy versus atomic number = -0.15007 MeV/nucleon "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The slope of alpha decay energy versus atomic number =  -0.15  MeV/nucleon\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex10-pg206"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "## Exa5.10 : : Page 206 (2011)\n",
      "#find The hindrance factor for alpha particle\n",
      "import math\n",
      "h_kt = 1.05457e-34;        ## Reduced Planck's constant, joule sec\n",
      "e = 1.60218e-19;        ## Charge of an electron, coulomb\n",
      "l = 2.;                ## Orbital angular momentum\n",
      "eps_0 = 8.5542e-12;        ## Absolute permittivity of free space, coulomb square per newton per metre square\n",
      "Z_D = 90.;            ## Atomic number of daughter nucleus\n",
      "m = 6.644e-27;        ## Mass of alpha particle, Kg\n",
      "R = 8.627e-15;        ## Radius of daughter nucleus, metre\n",
      "T1_by_T0 = math.exp(2.*l*(l+1.)*h_kt/e*math.sqrt(math.pi*eps_0/(Z_D*m*R)));    ## Hindrance factor\n",
      "print'%s %.2f %s'%(\"The hindrance factor for alpha particle = \" ,T1_by_T0,\"\");\n",
      "\n",
      "## Result\n",
      "## The hindrance factor for alpha particle = 1.768 "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The hindrance factor for alpha particle =  1.77 \n"
       ]
      }
     ],
     "prompt_number": 8
    }
   ],
   "metadata": {}
  }
 ]
}