1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
|
{
"metadata": {
"name": "",
"signature": "sha256:a3997772daa49e18a0aa83e11b98c36eeb94107cace4b98c9321fc654338f29e"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter4-Detection and Measurement of Nuclear Reactions"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex1-pg178"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa4.1 : : Page 178 (2011)\n",
"#find The resultant pulse height recorded in the fission chamber\n",
"import math\n",
"N = 200e+006/35.; ## Total number of ion-pairs\n",
"e = 1.60218e-019; ## Charge of an ion, coulomb\n",
"Q = N*e; ## Total charge produced in the chamber, coulomb\n",
"C = 25e-012; ## Capacity of the collector, farad\n",
"V = Q/C; ## Resultant pulse height, volt \n",
"print'%s %.2e %s'%(\"\\nThe resultant pulse height recorded in the fission chamber = \",V,\" volt\");\n",
"\n",
"## Result\n",
"## The resultant pulse height recorded in the fission chamber = 3.66e-002 volt "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The resultant pulse height recorded in the fission chamber = 3.66e-02 volt\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2-pg178"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa4.2 : : Page 178 (2011)\n",
"#find The energy of the alpha particles\n",
"import math; \n",
"V = 0.8/4.; ## Pulse height, volt\n",
"e = 1.60218e-019; ## Charge of an ion, coulomb\n",
"C = 0.5e-012; ## Capacity of the collector, farad\n",
"Q = V*C; ## Total charge produced, coulomb\n",
"N = Q/e; ## Number of ion pairs \n",
"E_1 = 35.; ## Energy of one ion pair, electron volt\n",
"E = N*E_1/10**6; ## Energy of the alpha particles, mega electron volt\n",
"print'%s %.2f %s'%(\"\\nThe energy of the alpha particles = \",E,\" MeV\");\n",
"\n",
"## Result\n",
"## The energy of the alpha particles = 21.845 MeV (The answer is wrong in the textbook)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The energy of the alpha particles = 21.85 MeV\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex3-pg178"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa4.3 : : Page 178 (2011)\n",
"#find Total number of ion pairs produced and Total charge flow in the counter\n",
"import math\n",
"E = 10e+06; ## Energy produced by the ion pairs, electron volts \n",
"N = E/35.; ## Number of ion pair produced\n",
"m = 10**3; ## Multiplication factor\n",
"N_t = N*m; ## Total number of ion pairs produced\n",
"e = 1.60218e-019; ## Charge of an ion, coulomb\n",
"Q = N_t*e; ## Total charge flow in the counter, coulomb\n",
"t = 10**-3; ## Pulse time, sec\n",
"R = 10**4; ## Resistance , ohm\n",
"I = Q/t; ## Current passes through the resistor, ampere\n",
"V = I*R; ## Height of the voltage pulse, volt\n",
"print'%s %.2f %s %.2e %s %.2e %s '%(\"\\nTotal number of ion pairs produced: \",N_t,\"\"and \" \\nTotal charge flow in the counter : \",Q,\" coulomb\"and \"\\nHeight of the voltage pulse :\",V,\" volt\")\n",
"\n",
"## Result\n",
"## Total number of ion pairs produced: 2.857e+008 \n",
"## Total charge flow in the counter : 4.578e-011 coulomb\n",
"## Height of the voltage pulse : 4.578e-004 volt "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"Total number of ion pairs produced: 285714285.71 4.58e-11 \n",
"Height of the voltage pulse : 4.58e-04 volt \n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex4-pg178"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa4.4 : : Page 178 (2011)\n",
"#find The radial electric field and The life of the G.M. Counter\n",
"import math; \n",
"V = 1000.; ## Operating voltage of Counter, volt \n",
"x = 1e-004; ## Time taken, sec\n",
"b = 2.; ## Radius of the cathode, cm\n",
"a = 0.01; ## Diameter of the wire, cm\n",
"E_r = V/(x*math.log(b/a)); ## Radial electric field, V/m\n",
"C = 1e+009; ## Total counts in the GM counter\n",
"T = C/(50.*60.*60.*2000.); ## Life of the G.M. Counter, year\n",
"print'%s %.2f %s %.2f %s '%(\"\\nThe radial electric field: \",E_r,\"V/m\"and\"\\nThe life of the G.M. Counter : \",T,\" years\");\n",
"\n",
"## Result\n",
"## The radial electric field: 1.89e+006V/m\n",
"## The life of the G.M. Counter : 2.778 years "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The radial electric field: 1887391.66 \n",
"The life of the G.M. Counter : 2.78 years \n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex5-pg178"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa4.5 : : Page 178 (2011)\n",
"import math; \n",
"#find The avalanche voltage in G.M. tube\n",
"I = 15.7; ## Ionisation potential of argon, eV\n",
"b = 0.025; ## Radius of the cathode, metre\n",
"a = 0.006e-02; ## Radius of the wire, metre\n",
"L = 7.8e-06; ## Mean free path, metre\n",
"V = round(I*a*math.log(b/a)/L); ## Avalanche voltage in G.M. tube, volt\n",
"print'%s %.2f %s'%(\"\\nThe avalanche voltage in G.M. tube = \",V,\" volt\");\n",
"\n",
"## Result\n",
"## The avalanche voltage in G.M. tube = 729 volt "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The avalanche voltage in G.M. tube = 729.00 volt\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex6-pg179"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa4.6 : : Page 179 (2011)\n",
"#find The voltage fluctuation GM tube\n",
"import math; \n",
"C_r = 0.1e-02; ## Counting rate of GM tube\n",
"S = 3.; ## Slope of the curve\n",
"V = C_r*100*100/S; ## Voltage fluctuation, volt\n",
"print'%s %.2f %s'%(\"\\nThe voltage fluctuation GM tube = \",V,\" volt\");\n",
"\n",
"## Result\n",
"## The voltage fluctuation GM tube = 3.33 volt "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The voltage fluctuation GM tube = 3.33 volt\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex7-pg179"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa4.7 : : Page-179 (2011)\n",
"#find Time measurement for actual count and Time measurement for backward count\n",
"import math; \n",
"R_t = 100.; ## Actual count rate, per sec\n",
"R_B = 25.; ## Backward count rate, per sec\n",
"V_S = 0.03; ## Coefficient of variation\n",
"R_S = R_t-R_B; ## Source counting rate,per sec\n",
"T_t = (R_t+math.sqrt(R_t*R_B))/(V_S**2*R_S**2); ## Time measurement for actual count, sec\n",
"T_B = T_t*math.sqrt(R_B/R_t); ## Time measurement for backward count, sec\n",
"print'%s %.2f %s %.2f %s '%(\"\\nTime measurement for actual count : \",T_t,\" sec\"and \" \\nTime measurement for backward count : \",T_B,\" sec\");\n",
"\n",
"## Result\n",
"## Time measurement for actual count : 29.630 sec \n",
"## Time measurement for backward count : 14.8 sec"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"Time measurement for actual count : 29.63 \n",
"Time measurement for backward count : 14.81 sec \n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex8-pg179"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa4.8 : : Page-179 (2011)\n",
"#find The capacitance of the detector and The capacitance of the detector \n",
"import math; \n",
"A = 1.5e-4; ## Area of capacitor plates, square metre\n",
"K = 12.; ## Dielectric constant\n",
"D = K*8.8542e-012; ## Electrical permittivity of the medium, per newton-metre-square coulomb square\n",
"x = 50e-06; ## Width of depletion layer, metre\n",
"C = A*D/x*10**12; ## Capacitance of the silicon detector, pF\n",
"E = 4.5e+06; ## Energy produced by the ion pairs, eV\n",
"N = E/3.5; ## Number of ion pairs\n",
"e = 1.60218e-019; ## Charge of each ion, coulomb\n",
"Q = N*e; ## Total charge, coulomb\n",
"V = Q/C*10**12; ## Potential applied across the capacitor, volt\n",
"print'%s %.2f %s %.2e %s '%(\"\\nThe capacitance of the detector : \",C,\" pF\"and \"\\nThe capacitance of the detector : \",V,\" volt\");\n",
"\n",
"## Result\n",
"## The capacitance of the detector : 318.75 pF\n",
"## The potential applied across the capacitor : 6.46e-004 volt \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The capacitance of the detector : 318.75 \n",
"The potential applied across the capacitor : 6.46e-04 volt \n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex9-pg180"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa4.9 : : Page-180 (2011)\n",
"#find The statistical error of the measured ratio\n",
"import math\n",
"N_A = 1000.; ## Number of count observed for radiation A\n",
"N_B = 2000.; ## Number of count observed for radiation B\n",
"r = N_A/N_B; ## Ratio of count A to the count B\n",
"E_r = math.sqrt(1./N_A+1./N_B); ## Statistical error \n",
"print'%s %.2f %s'%(\"\\nThe statistical error of the measured ratio = \", E_r*r,\"\");\n",
"\n",
"## Result\n",
"## The statistical error of the measured ratio = 0.02 (Wrong answer in the textbook)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The statistical error of the measured ratio = 0.02 \n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex10-pg180"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa4.10 : : Page 180 (2011)\n",
"#find The charge collected at the anode of photo multiplier tube\n",
"import math; \n",
"E = 4e+006; ## Energy lost in the scintillator, eV\n",
"N_pe = E/10**2*0.5*0.1; ## Number of photoelectrons emitted\n",
"G = 10**6; ## Gain of photomultiplier tube\n",
"e = 1.6e-019; ## Charge of the electron, C\n",
"Q = N_pe*G*e; ## Charge collected at the anode of photo multiplier tube, C\n",
"print'%s %.4e %s'%(\"\\nThe charge collected at the anode of photo multiplier tube : \",Q,\" C\");\n",
"\n",
"## Result\n",
"## The charge collected at the anode of photo multiplier tube : 3.2000e-010 C "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The charge collected at the anode of photo multiplier tube : 3.2000e-10 C\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex11-pg180"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa11 : : Page 180 (2011)\n",
"#find Charge collected at the anode of photo multiplier tube\n",
"E = 4e+06; ## Energy lost in the scintillator, eV\n",
"N_pe = E/10**2*0.5*0.1; ## Number of photoelectrons emitted\n",
"G = 10**6; ## Gain\n",
"e = 1.6e-019; ## Charge of the electron, C\n",
"Q = N_pe*G*e; ## Charge collected at the anode of photo multiplier tube, C\n",
"print'%s %.4e %s'%(\"\\nCharge collected at the anode of photo multiplier tube : \",Q,\" C\");\n",
"## Result\n",
"## Charge collected at the anode of photo multiplier tube : 3.2000e-010 C "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"Charge collected at the anode of photo multiplier tube : 3.2000e-10 C\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex12-pg181"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa4.12 : : Page 181 (2011)\n",
"#find Standard deviation of the reading\n",
"## Defining an array\n",
"import math;\n",
"import numpy\n",
"n = numpy.zeros((6,1)); ## Declare the cell matrix of 1X6 \n",
"n[0,0] = 10000;\n",
"n[1,0]= 10200;\n",
"n[2,0] = 10400;\n",
"n[3,0] = 10600;\n",
"n[4,0] = 10800;\n",
"n[5,0] = 11000;\n",
"g = 0.; ## \n",
"k = 6;\n",
"H = 0.;\n",
"for i in (0,k-1):\n",
" g = g + n[i,0]\n",
"\n",
"N = g/k; ## Mean of the count\n",
"D = math.sqrt(N);\n",
"for i in range (0,k-1):\n",
" H = H+((n[i,0]-N)*(n[i,0]-N)) \n",
"\n",
"S_D = round(math.sqrt(H/(k-1)));\n",
"print'%s %.2f %s'%(\"\\nStandard deviation of the reading : \", S_D,\"\");\n",
"delta_N = math.sqrt(N);\n",
"if (S_D > delta_N) :\n",
" print(\"\\nThe foil cannot be considered uniform..!\");\n",
"else:\n",
" print(\"\\nThe foil can be considered uniform.\");\n",
"\n",
"\n",
"## Result\n",
"## Standard deviation of the reading : 374\n",
"## The foil cannot be considered uniform..! "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"Standard deviation of the reading : 6906.00 \n",
"\n",
"The foil cannot be considered uniform..!\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex13-pg181"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa4.13 : : Page 181 (2011)\n",
"#findNo. of electrons in the output\n",
"import math\n",
"V = 2e-03; ## Voltage impulse, volt\n",
"C = 120e-012; ## Capacitance of the capacitor, F\n",
"e = 1.6e-019; ## Charge of the electron, C\n",
"n = C*V/(15.*e); ## No. of electons\n",
"N = n**(1/10.); ## No. of electrons in the output\n",
"print'%s %.2f %s'%(\"\\nNo. of electrons in the output : \",N,\" (approx)\");\n",
"\n",
"## Result\n",
"## No. of electrons in the output : 3.16 (approx) "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"No. of electrons in the output : 3.16 (approx)\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex14-pg181"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa4.14 : : Page 181 (2011)\n",
"#find Time of flight of proton and Time of flight of electron\n",
"import math\n",
"m_p = 0.938; ## Mass of the proton, GeV\n",
"E = 1.4; ## Total energy of proton, GeV\n",
"gama = E/m_p; ## Boost parameter\n",
"bta = math.sqrt(1-1/gama**2); ## Relativistic factor\n",
"d = 10.; ## Distance between two counters,m\n",
"C = 3e+08; ## Velocity of light ,m/s\n",
"t_p = d/(bta*C); ## Time of flight of proton ,sec\n",
"T_e = d/C; ## Time of flight of electron, sec\n",
"print'%s %.2f %s %.2f %s '%(\"\\nTime of flight of proton: \",t_p/1e-009,\" ns\"and \" \\nTime of flight of electron : \",T_e/1e-009,\" ns \");\n",
"\n",
"## Result\n",
"## Time of flight of proton: 44.90 ns \n",
"## Time of flight of electron : 33.33 ns "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"Time of flight of proton: 44.90 \n",
"Time of flight of electron : 33.33 ns \n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex15-pg182"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa4.15 : : Page 182 (2011)\n",
"#find The fractional error in rest mass of the particle\n",
"import math;\n",
"p = 100.; ## Momentum of the particle, GeV\n",
"n = 1+1.35e-04; ## Refractive index of the gas \n",
"m_0 = 1.; ## Mass, GeV per square coulomb\n",
"gama = math.sqrt((p**2+m_0**2)/m_0); ## Boost parameter\n",
"bta = math.sqrt (1-1/gama**2); ## Relativistic parameter\n",
"d_theta = 1e-003; ## Error in the emission angle, radian\n",
"theta = math.acos(1/(n*bta)); ## Emision angle of photon, radian \n",
"F_err = (p**2*n**2*2*theta*10**-3)/(2*m_0**2); ## Fractional error\n",
"print'%s %.2f %s'%(\"\\nThe fractional error in rest mass of the particle = \", F_err,\"\");\n",
"\n",
"## Result \n",
"## The fractional error in rest mass of the particle = 0.13 "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The fractional error in rest mass of the particle = 0.13 \n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex16-pg182"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa4.16 : : Page 182 (2011)\n",
"#find The total number of quantas during emission of visible light\n",
"import math;\n",
"u = 1.49; ## Refractive index\n",
"E = 20*1.60218e-019; ## Energy of the electron, joule\n",
"m_e = 9.1e-031; ## Mass of the electron, Kg\n",
"C = 3e-08; ## Velocity of the light, m/s\n",
"bta = (1 + (1/(E/(m_e*C**2)+1))**2 ); ## Boost parameter\n",
"z = 1.; ## \n",
"L_1 = 4000e-010; ## Initial wavelength, metre\n",
"L_2 = 7000e-010; ## Final wavelength, metre\n",
"N = 2*math.pi*z**2/137.*(1./L_1-1./L_2)*(1-1./(bta**2*u**2)); ## Number of quanta of visible light, quanta per centimetre\n",
"print'%s %.2f %s'%(\"\\nThe total number of quantas during emission of visible light = \", round(N/100),\"quanta/cm\");\n",
"\n",
"## Result \n",
"## The total number of quantas during emission of visible light = 270 quanta/cm "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The total number of quantas during emission of visible light = 270.00 quanta/cm\n"
]
}
],
"prompt_number": 16
}
],
"metadata": {}
}
]
}
|