1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
|
{
"metadata": {
"name": "",
"signature": "sha256:0f490ccea3b13c889d4ee8d26efe8421ceedda6e18896bd5d0ed1b94aaa5c5de"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter3-Interaction of Nuclear radiations with matter"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex1-pg123"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa3.1 : : Page-123 (2011)\n",
"#find range of an alpha particle and metre the thickness\n",
"E = 9.; ## Energy of the alpha particle, MeV\n",
"S = 1700.; ## Stopping power of Al\n",
"D = 2700.; ## Density of Al, Kg per cubic metre\n",
"R_air = 0.00318*E**(3/2.); ## Range of an alpha particle in air,metre\n",
"R_Al = R_air/S; ## Range of an alpha particle in Al, metre\n",
"T = D*1./S; ## Thickness in Al of 1m air, Kg per square metre\n",
"print\"%s %.2e %s %.2f %s \"%(\"The range of an alpha particle = \",R_Al,\" metre The thickness in Al of 1 m air =\",T,\" Kg per square metre\");\n",
"\n",
"## Result\n",
"## The range of an alpha particle = 5.05e-05 metre \n",
"## The thickness in Al of 1 m air = 1.59 Kg per square metre \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The range of an alpha particle = 5.05e-05 metre The thickness in Al of 1 m air = 1.59 Kg per square metre \n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex4-pg124"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa3.4: : Page-124 (2011)\n",
"#find the haif value thickness for beta absorptions\n",
"import math\n",
"E_max = 1.17; ## Maximum energy of the beta particle, mega electron volts\n",
"D = 2.7; ## Density of Al,gram per cubic metre\n",
"u_m = 22./E_max; ## Mass absorption coefficient,centimetre square per gram\n",
"x_h = math.log(2.)/(u_m*D); ## Half value thickness for beta absorption, cm\n",
"print'%s %.2f %s'%(\"The Half value thickness for beta absorption = \",x_h,\" cm\"); \n",
"\n",
"## Result \n",
"## The Half value thickness for beta absorption = 0.014 cm \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Half value thickness for beta absorption = 0.01 cm\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex7-pg125"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa3.7: : Page 125(2011)\n",
"#calculate ratio of raditon loss to ionisation\n",
"Z = 82.; ## Atomic number\n",
"E = 1.; ## Energy of the beta paricle, MeV\n",
"I_l = 800.; ## Ionisation loss, MeV\n",
"R = Z*E/I_l; ## Ratio of radiation loss to ionisation loss\n",
"E_1 = I_l/Z; ## Energy of the beta particle when radiation radiation loss is equal to ionisation loss, MeV\n",
"\n",
"print'%s %.2e %s %.2f %s '%(\"The ratio of radiation loss to ionisation loss =\",R,\" The energy of the beta particle = \",E_1,\" MeV \");\n",
"\n",
"## Result\n",
"## The ratio of radiation loss to ionisation loss = 1.025e-01 \n",
"## The energy of the beta particle = 9.76 MeV \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The ratio of radiation loss to ionisation loss = 1.02e-01 The energy of the beta particle = 9.76 MeV \n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex8-pg125"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa3.8 : : Page 125(2011)\n",
"#find The half value thickness of Al and The mass absorption coefficient\n",
"import math\n",
"x = 0.25; ## Thickness of Al, metre\n",
"U_l = 1./x*math.log(50.); ## Linear absorption coefficient\n",
"d = 2700.; ## density of the Al, Kg per cubic centimetre \n",
"x_h = math.log(2.)/U_l; ## Half value thickness of Al, metre\n",
"U_m = U_l/d; ## Mass absorption coefficient, square metre per Kg\n",
"print'%s %.2f %s %.3f %s'%(\"The half value thickness of Al = \",x_h,\" Kg per cubic metre The mass absorption coefficient = \",U_m,\" square metre per Kg \");\n",
"\n",
"## Result\n",
"## The half value thickness of Al = 0.0443 Kg per cubic metre \n",
"## The mass absorption coefficient = 0.00580 square metre per Kg \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The half value thickness of Al = 0.04 Kg per cubic metre The mass absorption coefficient = 0.006 square metre per Kg \n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex9-pg125"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa3.9 : : Page-125(2011)\n",
"#find The energy of the compton recoil electrons\n",
"import math\n",
"E_g = 2.19*1.6e-013; ## Energy of the gamma rays, joule\n",
"m_e = 9.10939e-031; ## Mass of the electron, Kg\n",
"C = 3e+08; ## Velocity of light, m/s\n",
"E_max = (E_g/(1.+(m_e*C**2)/(2.*E_g)))/(1.6e-013); ## Energy of the compton recoil electron, MeV\n",
"print\"%s %.2f %s\"%(\"The energy of the compton recoil electrons = \",E_max,\" MeV\"); \n",
"\n",
"## Result \n",
"## The energy of the compton recoil electrons = 1.961 MeV\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The energy of the compton recoil electrons = 1.96 MeV\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex10-pg125"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa3.10 : : Page-125(2011)\n",
"#find The average energy of the positron \n",
"m_e = 9.1e-31; ## Mass of the positron, Kg\n",
"e = 1.6e-19; ## Charge of the positron, coulomb\n",
"c = 3e+08; ## Velocity of the light, metre per sec\n",
"eps = 8.85e-12; ## Absolute permittivity of free space, per N per metre-square per coulomb square\n",
"h = 6.6e-34; ## Planck's constant, joule sec\n",
"E = e**2.*m_e*c/(eps*h*1.6e-13); ## Average energy of the positron, mega electron volts\n",
"print'%s %.2f %s'%(\"The average energy of the positron = \",E,\"Z MeV\");\n",
"\n",
"## Result\n",
"## The average energy of the positron = 0.0075Z MeV \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The average energy of the positron = 0.01 Z MeV\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex11-pg125"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa3.11 : : Page-125(2011)\n",
"#find The refractive index of the gas and The angle at which Cerenkov radiation is emitted \n",
"import math\n",
"P = 1.; ## Momentum of the proton, GeV/c\n",
"M_0 = 0.94; ## Rest mass of the proton, GeV/c-square\n",
"G = math.sqrt((P/M_0)**2.+1.) ## Lorentz factor\n",
"V = math.sqrt(1.-1./G**2.); ## Minimum velocity of the electron, m/s\n",
"u = 1/V; ## Refractive index of the gas\n",
"print'%s %.2f %s'%(\"The refractive index of the gas =\", u,\"\"); \n",
"u = 1.6; ## Refractive index\n",
"theta = round (math.acos(1/(u*V))*180/3.14); ## Angle at which cerenkov radiatin is emitted,degree\n",
"print'%s %.2f %s'%(\"The angle at which Cerenkov radiation is emitted =\",theta,\" degree\") \n",
"\n",
"## Result \n",
"## The refractive index of the gas = 1.37\n",
"## The angle at which Cerenkov radiation is emitted = 31 degree \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The refractive index of the gas = 1.37 \n",
"The angle at which Cerenkov radiation is emitted = 31.00 degree"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex12-pg126"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa3.12 : : Page-126(2011)\n",
"#find The minimum kinetic energy required to electron to emit cerenkov radiation\n",
"import math\n",
"n = 1+1.35e-04; ## Refractive index of the medium\n",
"V_min = 1./n; ## Minimum velocity of the electron, m/s\n",
"p = (1.+V_min)*(1.-V_min); ## It is nothing but just to take the product \n",
"G_min = 1./math.sqrt(p); ## Lorentz factor\n",
"m_e = 9.10939e-031; ## Mass of the electron, Kg\n",
"C = 3e+08; ## Velocity of light, metre per sec\n",
"T_min = ((G_min-1.)*m_e*C**2.)/(1.602e-013); ## Minimum kinetic energy required by an electro to emit cerenkov radiation, mega electron volts\n",
"print'%s %.2f %s'%(\"The minimum kinetic energy required to electron to emit cerenkov radiation = \",T_min,\" MeV\");\n",
" \n",
"## Result \n",
"## The minimum kinetic energy required to electron to emit cerenkov radiation = 30.64 MeV \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The minimum kinetic energy required to electron to emit cerenkov radiation = 30.64 MeV\n"
]
}
],
"prompt_number": 8
}
],
"metadata": {}
}
]
}
|