1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
|
{
"metadata": {
"name": "",
"signature": "sha256:e2f7c7551d6e417829aadd6f90608da5e4f835298a7f6245d9b1f454185575b2"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter8-Nuclear Forces"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex3-pg349"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa8.3 : : Page-349 (2011)\n",
"#find The probability that the proton moves within the range of neutron\n",
"import math\n",
"b = 1.9e-15; ## Width of square well potential, metre\n",
"h_kt = 1.054571e-034; ## Reduced planck's constant, joule sec\n",
"c = 3e+08; ## Velocity of light, metre per sec\n",
"m_n = 1.67e-27; ## Mass of a nucleon , Kg\n",
"V_0 = 40*1.6e-13; ## Depth, metre\n",
"E_B = (V_0-(1/(m_n*c**2)*(math.pi*h_kt*c/(2*b))**2))/1.6e-13; ## Binding energy, mega electron volts\n",
"alpha = math.sqrt(m_n*c**2*E_B*1.6e-13)/(h_kt*c); ## scattering co efficient, per metre\n",
"P = (1+1/(alpha*b))**-1.; ## Probability\n",
"R_mean = math.sqrt (b**2./2.*(1./3.+4./math.pi**2.+2.5)); ## Mean square radius, metre\n",
"print'%s %.2f %s %.2e %s'%(\"\\nThe probability that the proton moves within the range of neutron = \",P,\" \\n\" \"The mean square radius of the deuteron = \",R_mean,\" metre\")\n",
"\n",
"\n",
"## Result\n",
"## The probability that the proton moves within the range of neutron = 0.50 \n",
"## The mean square radius of the deuteron = 2.42e-015 metre \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The probability that the proton moves within the range of neutron = 0.50 \n",
"The mean square radius of the deuteron = 2.42e-15 metre\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex5-pg349"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa8.5 : : Page-349 (2011)\n",
"#find The total cross section for n-p scattering \n",
"import math\n",
"a_t = 5.38e-15;\n",
"a_s = -23.7e-15;\n",
"r_ot = 1.70e-15;\n",
"r_os = 2.40e-15;\n",
"m = 1.6748e-27;\n",
"E = 1.6e-13;\n",
"h_cut = 1.0549e-34;\n",
"K_sqr = m*E/h_cut**2;\n",
"sigma = 1/4.*(3.*4*math.pi*a_t**2./(a_t**2.*K_sqr+(1.-1/2.*K_sqr*a_t*r_ot)**2)+4*math.pi*a_s**2/(a_s**2*K_sqr+(1-1./2.*K_sqr*a_s*r_os)**2))*1e+028; ## Total cross-section for n-p scattering, barn\n",
"print'%s %.2f %s'%(\"\\nThe total cross section for n-p scattering = \",sigma,\" barn\");\n",
"\n",
"## Result\n",
"## The total cross section for n-p scattering = 2.911 barn \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The total cross section for n-p scattering = 2.91 barn\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex8-pg351"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa8.8 : : Page-351 (2011)\n",
"#find The possible angular momentum states with their parities are as follows\n",
"import math\n",
"S = 1.; ## Spin angular momentum(s1+-s2), whereas s1 is the spin of proton and s2 is the spin of neutron.\n",
"m = 2.*S+1.; ## Spin multiplicity\n",
"j = 1.; ## Total angular momentum\n",
"print(\"\\nThe possible angular momentum states with their parities are as follows : \");\n",
"print'%s %.2f %s %.2f %s '%(\"\\n \",m, \" \" and \"S has even parity \",j,\"\");\n",
"print'%s %.2f %s %.2f %s '%(\"\\n \",m,\" \" and \"P has odd parity \", j,\"\");\n",
"print'%s %.2f %s %.2f %s'%(\"\\n \",m, \" \" and \"S has odd parity \",j,\"\"); \n",
"S = 0.;\n",
"m = 2.*S+1.\n",
"print(m)\n",
"print'%s %.2f %s %.2f %s '%(\"\\n \",m,\" \" and \"P has odd parity \", j,\"\");\n",
" \n",
"## Result \n",
"## The possible angular momentum states with their parities are as follows : \n",
"## 3S1 has even parity \n",
"## 3P1 has odd parity \n",
"## 3D1 has even parity\n",
"## 1P1 has odd parity "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The possible angular momentum states with their parities are as follows : \n",
"\n",
" 3.00 S has even parity 1.00 \n",
"\n",
" 3.00 P has odd parity 1.00 \n",
"\n",
" 3.00 S has odd parity 1.00 \n",
"1.0\n",
"\n",
" 1.00 P has odd parity 1.00 \n"
]
}
],
"prompt_number": 22
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex9-pg351"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Exa8.9 : : Page-351 (2011)\n",
"#find The possible states are\n",
"\n",
"print(\"\\nThe possible states are : \");\n",
"#For s = 0\n",
"s = 0; # Spin angular momentum\n",
"m = 2*s+1; # Spin multiplicity\n",
"for j in range(0,3): # Total angular momentum\n",
" l = j\n",
" if l == 0:\n",
" print\"%s %.1f %s %.d %s \"%(\"\",j,\"\"and \"S\",m,\"\")\n",
" elif l == 2:\n",
" print\"%s %.1f %s %.d %s \"%(\"\",j,\"\"and \"D\",m,\"\") \n",
" \n",
"\n",
"#For s = 1\n",
"s = 1;\n",
"m = 2*s+1;\n",
"l = 2\n",
"for j in range(0,3): \n",
" if j == 0:\n",
" print\"%s %.1f %s %.d %s \"%(\"\",j,\"\"and \"P\",m,\"\")\n",
" elif j ==1:\n",
" print\"%s %.d %s %.d %s \"%(\"\",j,\"\"and \"P\",m,\"\")\n",
" elif j ==2:\n",
" print\"%s %.d %s %.d %s \"%(\"\",j,\"\"and \"P\",m,\"\")\n",
" \n",
"\n",
"for j in range(2,3):\n",
" print\"%s %.d %s %.d %s \"%(\"\",j,\"\" and \"F\",m,\"\")\n",
"\n",
"\n",
"#Result\n",
"#Possible states are : \n",
"# The possible states are : \n",
"# 0S1, 2D1, 0P3, 1P3, 2P3 and 2F3 \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The possible states are : \n",
" 0.0 1 \n",
" 2.0 1 \n",
" 0.0 3 \n",
" 1 3 \n",
" 2 3 \n",
" 2 3 \n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex10-pg352"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa8.10 : : Page-352 (2011)\n",
"#find The kinetic energy of each nucleon and The total kinetic energy\n",
"import math\n",
"r = 2e-015; ## Range of nuclear force, metre\n",
"h_kt = 1.0546e-34; ## Reduced value of Planck's constant, joule sec\n",
"m = 1.674e-27; ## Mass of each nucleon, Kg\n",
"K = round (2*h_kt**2./(2*m*r**2*1.6023e-13)); ## Kinetic energy of each nucleon in centre of mass frame, mega electron volts\n",
"K_t = 2.*K; ## Total kinetic energy, mega electron volts\n",
"K_inc = 2.*K_t; ## Kinetic energy of the incident nucleon, mega electron volts\n",
"print'%s %.2f %s %.2f %s %.2f %s '%(\"\\nThe kinetic energy of each nucleon = \",K,\" MeV\" and \"The total kinetic energy =\",K_t,\" MeV\"and \"The kinetic energy of the incident nucleon =\",K_inc,\" MeV\")\n",
"\n",
"\n",
"## Result\n",
"## "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The kinetic energy of each nucleon = 10.00 The total kinetic energy = 20.00 The kinetic energy of the incident nucleon = 40.00 MeV \n"
]
}
],
"prompt_number": 4
}
],
"metadata": {}
}
]
}
|