1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
|
{
"metadata": {
"name": "",
"signature": "sha256:7bae67184aff3b5018323a5a7fd8d73277287467e3722f9114aa02be5e49dd72"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter12-Neutrons"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exx1-pg573"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa12.1 : : Page-573 (2011)\n",
"#calculate activity for Cu-63 and disintegrations\n",
"import math \n",
"N_0 = 6.23e+23; ## Avogadro's number, per mole\n",
"m = 0.1; ## Mass of copper foil, Kg\n",
"phi = 10**12; ## Neutron flux density, per square centimetre sec\n",
"a_63 = 0.691; ## Abundance of Cu-63\n",
"a_65 = 0.309; ## Abundance of Cu-65\n",
"W_m = 63.57; ## Molecular weight, gram\n",
"sigma_63 = 4.5e-24; ## Activation cross section for Cu-63, square centi metre\n",
"sigma_65 = 2.3e-24; ## Activation cross section for Cu-65, square centi metre\n",
"A_63 = phi*sigma_63*m*a_63/W_m*N_0; ## Activity for Cu-63, disintegrations per sec\n",
"A_65 = phi*sigma_65*m*a_65/W_m*N_0; ## Activity for Cu-65, disintegrations per sec\n",
"print'%s %.2e %s %.2e %s'%(\"\\nThe activity for Cu-63 is = \",A_63,\" disintegrations per sec\" and \"\\nThe activity for Cu-65 is = \",A_65,\" disintegrations per sec\");\n",
"\n",
"## Result\n",
"## The activity for Cu-63 is = 3.047e+009 disintegrations per sec \n",
"## The activity for Cu-65 is = 6.97e+008 disintegrations per sec "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The activity for Cu-63 is = 3.05e+09 \n",
"The activity for Cu-65 is = 6.97e+08 disintegrations per sec\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2-pg573"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa12.2 : : Page-573 (2011)\n",
"import math \n",
"#calculate enegy loss \n",
"A_Be = 9.; ## Mass number of beryllium\n",
"A_U = 238.; ## Mass number of uranium\n",
"E_los_Be = (1-((A_Be-1)**2/(A_Be+1)**2))*100.; ## Energy loss for beryllium\n",
"E_los_U = round((1-((A_U-1)**2/(A_U+1)**2))*100.); ## Energy loss for uranium\n",
"print'%s %.2f %s %.2f %s '%(\"\\nThe energy loss for beryllium is = \",E_los_Be,\" percent\"and \" \\nThe energy loss for uranium is = \",E_los_U,\" percent\");\n",
"\n",
"## Check for greater energy loss !!!!\n",
"if E_los_Be >= E_los_U :\n",
" print(\"\\nThe energy loss is greater for beryllium\");\n",
"else:\n",
" print(\"\\nThe energy loss is greater for uranium\");\n",
"\n",
"\n",
"## Result\n",
"## The energy loss for beryllium is = 36 percent \n",
"## The energy loss for uranium is = 2 percent\n",
"## The energy loss is greater for beryllium \n",
" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The energy loss for beryllium is = 36.00 \n",
"The energy loss for uranium is = 2.00 percent \n",
"\n",
"The energy loss is greater for beryllium\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex3-pg574"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa12.3 : : Page-574 (2011)\n",
"#calculate energy loss of neutron\n",
"import math \n",
"A = 12.; ## Mass number of Carbon\n",
"alpha = (A-1)**2/(A+1)**2; ## Scattering coefficient\n",
"E_loss = 1/2.*(1-alpha)*100.; ## Energy loss of neutron\n",
"print'%s %.2f %s'%(\"\\nThe energy loss of neutron = \",E_loss,\" percent\")\n",
"\n",
"## Result\n",
"## The energy loss of neutron = 14.201 percent \n",
" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The energy loss of neutron = 14.20 percent\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex4-pg574"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa12.4 : : Page-574 (2011)\n",
"#calculate number of collisions of neutrons \n",
"import math \n",
"zeta = 0.209; ## Moderated assembly\n",
"E_change = 100./1.; ## Change in energy of the neutron\n",
"E_thermal = 0.025; ## Thermal energy of the neutron, electron volts\n",
"E_n = 2*10**6; ## Energy of the neutron, electron volts\n",
"n = 1/zeta*math.log(E_change); ## Number of collisions of neutrons to loss 99 percent of their energies \n",
"n_thermal = 1/zeta*math.log(E_n/E_thermal); ## Number of collisions of neutrons to reach thermal energies\n",
"print'%s %.2f %s %.2f %s'%(\"\\nThe number of collisions of neutrons to loss 99 percent of their energies = \",n,\" \\nThe number of collisions of neutrons to reach thermal energies = \",n_thermal,\"\")\n",
"\n",
"## Result\n",
"## The number of collisions of neutrons to loss 99 percent of their energies = 22 \n",
"## The number of collisions of neutrons to reach thermal energies = 87 \n",
" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The number of collisions of neutrons to loss 99 percent of their energies = 22.03 \n",
"The number of collisions of neutrons to reach thermal energies = 87.07 \n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex5-pg574"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa12.5 : : Page-574 (2011)\n",
"#calculate average distance travelled by the neutron\n",
"import math\n",
"import scipy\n",
"from scipy import integrate\n",
"L = 1.; ## For simplicity assume thermal diffusion length to be unity, unit\n",
"def fun(x):\n",
" y=x*math.exp(-x/L)\n",
" return y\n",
"x_b = scipy.integrate.quad(fun, 0, 100); ## Average distance travelled by the neutron, unit\n",
"x_b1=x_b[0]\n",
"def fun2(x): \n",
" y1=x**2*math.exp(-x/L)\n",
" return y1\n",
"X=scipy.integrate.quad(fun2, 0, 100)\n",
"x_rms = math.sqrt(X[0]); ## Root mean square of the distance trvelled by the neutron, unit\n",
"print'%s %.2f %s'%(\"\\nThe average distance travelled by the neutron = \", x_b1,\"*L\");\n",
"print'%s %.2f %s %.2f %s '%(\"\\nThe root mean square distance travelled by the neutron = \",x_rms,\"\"and \"\",x_rms,\"x_bar\")\n",
"\n",
"## Result\n",
"## The average distance travelled by the neutron = 1*L\n",
"## The root mean square distance travelled by the neutron = 1.414L = 1.414x_bar \n",
" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The average distance travelled by the neutron = 1.00 *L\n",
"\n",
"The root mean square distance travelled by the neutron = 1.41 1.41 x_bar \n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex6-pg574"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa12.6 : : Page-574 (2011)\n",
"#calculate neutron flux through water \n",
"import math\n",
"Q = 5e+08; ## Rate at which neutrons produce, neutrons per sec\n",
"r = 20.; ## Distance from the source, centi metre\n",
"## For water\n",
"lambda_wtr = 0.45; ## Transport mean free path, centi metre\n",
"L_wtr = 2.73; ## Thermal diffusion length, centi metre\n",
"phi_wtr = 3*Q/(4.*math.pi*lambda_wtr*r)*math.exp(-r/L_wtr); ## Neutron flux for water, neutrons per square centimetre per sec\n",
"## For heavy water\n",
"lambda_h_wtr = 2.40; ## Transport mean free path, centi metre\n",
"L_h_wtr = 171.; ## Thermal diffusion length, centi metre\n",
"phi_h_wtr = 3*Q/(4.*math.pi*lambda_h_wtr*r)*math.exp(-r/L_h_wtr); ## Neutron flux for heavy water, neutrons per square centimetre per sec\n",
"print'%s %.2e %s %.2e %s '%(\"\\nThe neutron flux through water = \",phi_wtr,\" neutrons per square cm per sec\"and \"\\nThe neutron flux through heavy water = \",phi_h_wtr,\" neutrons per square cm per sec\")\n",
"\n",
"## Result\n",
"## The neutron flux through water = 8.730e+003 neutrons per square cm per sec \n",
"## The neutron flux through heavy water = 2.212e+006 neutrons per square cm per sec \n",
" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The neutron flux through water = 8.73e+03 \n",
"The neutron flux through heavy water = 2.21e+06 neutrons per square cm per sec \n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex7-pg575"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa12.7 : : Page-575 (2011)\n",
"#calculate neutron flux and diffusion length\n",
"import math\n",
"k = 1.38e-23; ## Boltzmann constant, joules per kelvin\n",
"T = 323.; ## Temperature, kelvin\n",
"E = (k*T)/1.6e-19; ## Thermal energy, joules\n",
"sigma_0 = 13.2e-28; ## Cross section, square metre\n",
"E_0 = 0.025; ## Energy of the neutron, electron volts\n",
"sigma_a = sigma_0*math.sqrt(E_0/E); ## Absorption cross section, square metre\n",
"t_half = 2.25; ## Half life, hours\n",
"D= 0.69/t_half; ## Decay constant, per hour\n",
"N_0 = 6.023e+026; ## Avogadro's number, per \n",
"m_Mn = 55.; ## Mass number of mangnese\n",
"w = 0.1e-03; ## Weight of mangnese foil, Kg\n",
"A = 200.; ## Activity, disintegrations per sec\n",
"N = N_0*w/m_Mn; ## Number of mangnese nuclei in the foil\n",
"x1 = 1.5; ## Base, metre\n",
"x2 = 2.0; ## Height, metre\n",
"phi = A/(N*sigma_a*0.416); ## Neutron flux, neutrons per square metre per sec\n",
"phi1 = 1.; ## For simplicity assume initial neutron flux to be unity, neutrons/Sq.m-sec\n",
"phi2 = 1/2.*phi1; ## Given neutron flux, neutrons/Sq.m-sec\n",
"L1 = 1/math.log(phi1/phi2)/(x2-x1); ## Thermal diffusion length for given neutron flux, m\n",
"L = math.sqrt(1./((1./L1)**2+(math.pi/x1)**2+(math.pi/x2)**2)); ## Diffusion length, metre\n",
"print'%s %.2e %s %.2f %s '%(\"\\nThe neutron flux = \",phi,\" neutrons per square metre per sec\"and \" \\nThe diffusion length = \",L,\" metre\");\n",
"\n",
"## Result\n",
"## The neutron flux = 3.51e+008 neutrons per square metre per sec \n",
"## The diffusion length = 0.38 metre\n",
"## Note: the difussion length is solved wrongly in the testbook\n",
" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The neutron flux = 3.51e+08 \n",
"The diffusion length = 0.38 metre \n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex8-pg575"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa12.8 : : Page-575(2011)\n",
"#find diffusion length for thermal neutron\n",
"import math\n",
"N_0 = 6.023e+026; ## Avogadro's number, per mole\n",
"rho = 1.62e+03; ## Density, kg per cubic metre\n",
"sigma_a = 3.2e-31; ## Absorption cross section, square metre\n",
"sigma_s = 4.8e-28; ## Scattered cross section, square metre\n",
"A = 12.; ## Mass number\n",
"lambda_a = A/(N_0*rho*sigma_a); ## Absorption mean free path, metre\n",
"lambda_tr = A/(N_0*rho*sigma_s*(1.-2./(3.*A))); ## Transport mean free path, metre\n",
"L = math.sqrt(lambda_a*lambda_tr/3.); ## Diffusion length for thermal neutron\n",
"print'%s %.2f %s'%(\"\\nThe diffusion length for thermal neutron = \",L,\" metre \")\n",
"\n",
"## Result\n",
"## The diffusion length for thermal neutron = 0.590 metre \n",
" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The diffusion length for thermal neutron = 0.59 metre \n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex9-pg575"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa12.9 : : Page-575 (2011)\n",
"#calculate graphite and neutron age and slowing down length and same as berylliums\n",
"import math\n",
"E_0 = 2e+06; ## Average energy of the neutron, electron volts\n",
"E = 0.025; ## Thermal energy of the neutron, electron volts\n",
"## For graphite\n",
"A = 12. ## Mass number\n",
"sigma_g = 33.5; ## The value of sigma for graphite\n",
"tau_0 = 1./(6.*sigma_g**2)*(A+2./3.)/(1.-2./(3.*A))*math.log(E_0/E); ## Age of neutron for graphite, Sq.m\n",
"L_f = math.sqrt(tau_0); ## Slowing down length of neutron through graphite, m\n",
"print'%s %.2f %s'%(\"\\nFor Graphite, A = \", A,\"\");\n",
"print'%s %.2f %s'%(\"\\nNeutron age = \",tau_0*1e+004,\" Sq.cm\");\n",
"print'%s %.2f %s'%(\"\\nSlowing down length =\",L_f,\" m\");\n",
"## For beryllium\n",
"A = 9. ## Mass number\n",
"sigma_b = 57.; ## The value of sigma for beryllium\n",
"tau_0 = 1/(6.*sigma_b**2)*(A+2./3.)/(1.-2./(3.*A))*math.log(E_0/E); ## Age of neutron for beryllium, Sq.m\n",
"L_f = math.sqrt(tau_0); ## Slowing down length of neutron through graphite, m\n",
"print'%s %.2f %s'%(\"\\n\\nFor Beryllium, A = \", A,\"\");\n",
"print'%s %.2f %s'%(\"\\nNeutron age = \",tau_0*1e+004,\" Sq.cm\");\n",
"print'%s %.2e %s'%(\"\\nSlowing down length = \",L_f,\" m\");\n",
"\n",
"## Result\n",
"## For Graphite, A = 12\n",
"## Neutron age = 362 Sq.cm\n",
"## Slowing down length = 0.190 m\n",
"\n",
"## For Beryllium, A = 9\n",
"## Neutron age = 97 Sq.cm\n",
"## Slowing down length = 9.9e-002 m "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"For Graphite, A = 12.00 \n",
"\n",
"Neutron age = 362.46 Sq.cm\n",
"\n",
"Slowing down length = 0.19 m\n",
"\n",
"\n",
"For Beryllium, A = 9.00 \n",
"\n",
"Neutron age = 97.46 Sq.cm\n",
"\n",
"Slowing down length = 9.87e-02 m\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex10-pg576"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa12.10 : : Page-576 (2011)\n",
"#find enegy of the neutrons\n",
"import math\n",
"theta = 3.5*math.pi/180.; ## Reflection angle, radian\n",
"d = 2.3e-10; ## Lattice spacing, metre\n",
"n = 1.; ## For first order\n",
"h = 6.6256e-34; ## Planck's constant, joule sec\n",
"m = 1.6748e-27; ## Mass of the neutron, Kg\n",
"E = n**2*h**2/(8.*m*d**2*math.sin(theta)**2*1.6023e-19); ## Energy of the neutrons, electron volts\n",
"print'%s %.2f %s'%(\"\\nThe energy of the neutrons = \",E,\" eV\");\n",
"\n",
"## Result\n",
"## The energy of the neutrons = 1.04 eV \n",
" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The energy of the neutrons = 1.04 eV\n"
]
}
],
"prompt_number": 14
}
],
"metadata": {}
}
]
}
|