1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
|
{
"metadata": {
"name": "",
"signature": "sha256:9b22acc9bcbd27c33c9e62b557ecc66fc981e9c1775b58e8ee670ca880259cf2"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter11-Particle Accelerators"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex1-pg535"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa11.1 : : Page-535(2011) \n",
"#calculate The optimum number of stages in the accelerator and the ripple voltage\n",
"import math\n",
"V_0 = 10**5; ## Accelerating voltage, volts\n",
"C = 0.02e-006; ## Capacitance, farad\n",
"I = 4*1e-003; ## Current, ampere\n",
"f = 200.; ## Frequency, cycles per sec\n",
"n = math.sqrt (V_0*f*C/I); ## Number of particles\n",
"delta_V = I*n*(n+1.)/(4.*f*C);\n",
"print'%s %.2f %s'%(\"\\nThe optimum number of stages in the accelerator = \", n,\"\");\n",
"print'%s %.2f %s'%(\"\\nThe ripple voltage = \", delta_V/1e+003,\"kV\");\n",
"\n",
"## Result\n",
"## The optimum number of stages in the accelerator = 10\n",
"## The ripple voltage = 27.5 kV \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The optimum number of stages in the accelerator = 10.00 \n",
"\n",
"The ripple voltage = 27.50 kV\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2-pg536"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa11.2 : : Page-536 (2011)\n",
"#calculate The charging current and The rate of rise of electrode potential\n",
"import math\n",
"s = 15.; ## Speed, metre per sec\n",
"w = 0.3; ## Width of the electrode, metre\n",
"E = 3e+06; ## Breakdown strength, volts per metre\n",
"eps = 8.85e-12; ## Absolute permitivity of free space, farad per metre\n",
"C = 111e-12; ## Capacitance, farad\n",
"i = round (2*eps*E*s*w*10**6); ## Current, micro ampere\n",
"V = i/C*10**-12; ## Rate of rise of electrode potential, mega volts per sec\n",
"print'%s %.2f %s %.2f %s '%(\"\\nThe charging current =\",i,\" micro-ampere\"and \" \\nThe rate of rise of electrode potential = \",V,\" MV/sec\");\n",
"\n",
"## Result\n",
"## The charging current = 239 micro-ampere \n",
"## The rate of rise of electrode potential = 2.15 MV/sec "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The charging current = 239.00 \n",
"The rate of rise of electrode potential = 2.15 MV/sec \n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex3-pg536"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa11.3 : : Page-536 (2011)\n",
"#calculate The length of the final drift tube and The kinetic energy of the injected protons\n",
"import math\n",
"import scipy\n",
"from scipy import integrate\n",
"\n",
"f = 200.*10**6; ## Frequency of the accelerator, cycle per sec\n",
"M = 1.6724e-27; ## Mass of the proton, Kg\n",
"E = 45.3*1.6e-13; ## Accelerating energy, joule\n",
"L_f = round (1./f*math.sqrt(2.*E/M)*100.); ## Length of the final drift tube, centi metre\n",
"L_1 = 5.35*10**-2; ## Length of the first drift tube, metre\n",
"K_E = (1./2.*M*L_1**2.*f**2.)/1.6e-13; ## Kinetic energy of the injected proton, MeV\n",
"E_inc = E/1.6e-13-K_E; ## Increase in energy, MeV\n",
"q = 1.6e-19; ## Charge of the proton, C\n",
"V = 1.49e+06; ## Accelerating voltage, volts\n",
"N = E_inc*1.6e-13/(q*V); ## Number of drift protons\n",
"def fun(n):\n",
" y=n**0.5\n",
" return y\n",
"\n",
"l2=scipy.integrate.quad(fun,0,N)\n",
"L = 1./f*math.sqrt(2.*q*V/M)*l2[0]; ## Total length of the accelerator, metre\n",
"print'%s %.2f %s %.2f %s %.2f %s '%(\"\\nThe length of the final drift tube = \",L_f,\" cm\"and\"\\nThe kinetic energy of the injected protons = \",K_E,\" MeV\"and\"\\nThe total length of the accelerator = \",L,\" metre\");\n",
"\n",
"## Result\n",
"## The length of the final drift tube = 47 cm\n",
"## The kinetic energy of the injected protons = 0.60 MeV\n",
"## The total length of the accelerator = 9.2 metre "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The length of the final drift tube = 47.00 \n",
"The kinetic energy of the injected protons = 0.60 \n",
"The total length of the accelerator = 9.25 metre \n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex5-pg536"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa11.5 : : Page-536 (2011)\n",
"#find energy of the emergine deutron and frequency of the dee voltage\n",
"import math\n",
"B = 1.4; ## Magnetic field, tesla\n",
"R = 88e-002; ## Radius of the orbit, metre\n",
"q = 1.6023e-019; ## Charge of the deutron, C\n",
"M_d = 2.014102*1.66e-27; ## Mass of the deutron, Kg\n",
"M_He = 4.002603*1.66e-27; ## Mass of the He ion, Kg\n",
"E = B**2*R**2*q**2/(2*M_d*1.6e-13); ## Energy og the emerging deutron, mega electron volts\n",
"f = B*q/(2.*math.pi*M_d)*10**-6; ## Frequency of the deutron voltage, mega cycles per sec\n",
"B_He = 2*math.pi*M_He*f*10**6/(2*q); ## Magnetic field required for He(++) ions, weber per square metre\n",
"B_change = B-B_He; ## Change in magnetic field, tesla\n",
"print'%s %.2f %s %.2f %s %.2f %s '%(\"\\nThe energy of the emerging deutron = \",E,\" MeV\" and \"\\nThe frequency of the dee voltage = \",f,\"MHz\" and\"\\nThe change in magnetic field = \",B_change,\" tesla\");\n",
"\n",
"## Result\n",
"## The energy of the emerging deutron = 36.4 MeV\n",
"## The frequency of the dee voltage = 10.68 MHz\n",
"## The change in magnetic field = 0.01 tesla "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The energy of the emerging deutron = 36.42 \n",
"The frequency of the dee voltage = 10.68 \n",
"The change in magnetic field = 0.01 tesla \n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex6-pg537"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa11.6: : Page-537 (2011)\n",
"#calculate effective reduction in magnetic field and charge in orbit radius\n",
"import math\n",
"K_E = 7.5*1.6023e-13; ## Kinetic energy, joule \n",
"r = 0.51; ## Radius of the proton's orbit, metre\n",
"E = 5*10**6; ## Electric field, volts per metre\n",
"m = 1.67e-27; ## Mass of the proton, Kg\n",
"q = 1.6023e-19; ## Charge of the proton, C\n",
"v = math.sqrt(2.*K_E/m); ## Velocity of the proton, metre per sec\n",
"B_red = E/v; ## The effective reduction in magnetic field, tesla\n",
"B = m*v/(q*r); ## Total magnetic field produced, tesla\n",
"r_change = r*B_red/B; ## The change in orbit radius, metre\n",
"print'%s %.2f %s %.2f %s '%(\"\\nThe effective reduction in magnetic field = \",B_red,\" tesla \"and \"\\nThe change in orbit radius = \",r_change,\" metre \");\n",
"\n",
"## Result\n",
"## The effective reduction in magnetic field = 0.132 tesla \n",
"## The change in orbit radius = 0.087 metre "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The effective reduction in magnetic field = 0.13 \n",
"The change in orbit radius = 0.09 metre \n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex7-pg537"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa11.7 : : Page-537 (2011)\n",
"#calculate enegy of the elctron and average enegy gained per revolution \n",
"import math\n",
"B = 0.4; ## Magnetic field, tesla\n",
"e = 1.6203e-19; ## Charge of an electron, C\n",
"R = 30*2.54e-02; ## Radius, metre\n",
"c = 3e+08; ## Capacitance, farad\n",
"E = B*e*R*c/1.6e-13; ## The energy of the electron, mega electron volts\n",
"f = 50.; ## Frequency, cycles per sec\n",
"N = c/(4*2*math.pi*f*R); ## Total number of revolutions\n",
"Avg_E_per_rev = E*1e+006/N; ## Average energy gained per revolution, electron volt\n",
"print'%s %.2f %s %.2f %s '%(\"\\nThe energy of the electron = \",E,\" MeV\"and \"\\nThe average energy gained per revolution = \",Avg_E_per_rev,\" eV\");\n",
"\n",
"## Result\n",
"## The energy of the electron = 92.6 MeV\n",
"## The average energy gained per revolution = 295.57 eV \n",
"## Note: Wrong answer is given in the textbook \n",
"## Average energy gained per revolution : 295.57 electron volts\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The energy of the electron = 92.60 \n",
"The average energy gained per revolution = 295.57 eV \n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex8-pg537"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa11.8 : : Page-537 (2011)\n",
"#calculate peak current and average current and duty cycle\n",
"import math\n",
"R = 0.35; ## Orbit radius, metre\n",
"N = 100e+06/480.; ## Total number of revolutions\n",
"L = 2*math.pi*R*N; ## Distance traversed by the electron, metre\n",
"t = 2e-06; ## Pulse duration, sec\n",
"e = 1.6203e-19; ## Charge of an electron, C\n",
"n = 3e+09; ## Number of electrons\n",
"f = 180.; ## frequency, hertz\n",
"I_p = n*e/t; ## Peak current, ampere\n",
"I_avg = n*e*f; ## Average current, ampere \n",
"tau = t*f; ## Duty cycle\n",
"print'%s %.2e %s %.2e %s %.2e %s'%(\"\\nThe peak current = \",I_p,\" ampere\" and \"\\nThe average current = \",I_avg,\" ampere \"and \"\\nThe duty cycle =\",tau,\"\");\n",
"\n",
"## Result\n",
"## The peak current = 2.4e-004 ampere \n",
"## The average current = 8.75e-008 ampere \n",
"## The duty cycle = 3.6e-004 \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The peak current = 2.43e-04 \n",
"The average current = 8.75e-08 \n",
"The duty cycle = 3.60e-04 \n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex9-pg538"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa11.9 : : Page-538 (2011)\n",
"#calculate maximum frequncy of the dee voltage and kinetic energy of the deutron \n",
"import math\n",
"q = 1.6023e-19; ## Charge of an electron, C\n",
"B_0 = 1.5; ## Magnetic field at the centre, tesla\n",
"m_d = 2.014102*1.66e-27; ## Mass of the deutron, Kg\n",
"f_max = B_0*q/(2*math.pi*m_d*10**6); ## Maximum frequency of the dee voltage, mega cycles per sec\n",
"B_prime = 1.4310; ## Magnetic field at the periphery of the dee, tesla\n",
"f_prime = 10**7; ## Frequency, cycles per sec\n",
"c = 3e+08; ## Velocity of the light, metre per sec\n",
"M = B_prime*q/(2*math.pi*f_prime*1.66e-27); ## Relativistic mass, u\n",
"K_E = (M-m_d/1.66e-27)*931.5; ## Kinetic energy of the particle, mega electron volts\n",
"print'%s %.2f %s %.2f %s '%(\"\\nThe maximum frequency of the dee voltage = \",f_max,\" MHz\"and \"\\nThe kinetic energy of the deuteron = \",K_E,\" MeV\");\n",
" \n",
"## Result\n",
"## The maximum frequency of the dee voltage = 11.44 MHz\n",
"## The kinetic energy of the deuteron = 171.6 MeV \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The maximum frequency of the dee voltage = 11.44 \n",
"The kinetic energy of the deuteron = 171.62 MeV \n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex10-pg538"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate frequency of the applied electric field and magnetic field intensity\n",
"## Exa11.10 : : Page-538 (2011)\n",
"import math\n",
"e = 1.6023e-19; ## Charge of an electron, C\n",
"E = 70*1.6e-13; ## Energy, electron volts\n",
"R = 0.28; ## Radius of the orbit, metre\n",
"c = 3e+08; ## Velocity of light, metre per sec\n",
"B = E/(e*R*c); ## Magnetic field intensity, tesla\n",
"f = e*B*c**2/(2*math.pi*E); ## Frequency, cycle per sec\n",
"del_E = 88.5*(0.07)**4*10**3/(R); ## Energy radiated by an electron, electron volts\n",
"print'%s %.2f %s %.2f %s %.2f %s '%(\"\\nThe frequency of the applied electric field = \",f,\" cycles per sec\" and\"\\nThe magnetic field intensity = \",B,\" tesla\"and \"\\nThe energy radiated by the electron =\",del_E,\" eV\");\n",
"\n",
"## Result\n",
"## The frequency of the applied electric field = 1.705e+008 cycles per sec \n",
"## The magnetic field intensity = 0.832 tesla\n",
"## The energy radiated by the electron = 7.6 eV "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The frequency of the applied electric field = 170523153.31 \n",
"The magnetic field intensity = 0.83 \n",
"The energy radiated by the electron = 7.59 eV \n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex11-pg538"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate kinetic energy of the accelerated nitrogen\n",
"## Exa11.11 : : Page-538 (2011)\n",
"import math\n",
"E = 3.; ## Energy of proton synchrotron, giga electron volts\n",
"m_0_c_sq = 0.938; ## Relativistic energy, mega electron volts\n",
"P_p = math.sqrt(E**2-m_0_c_sq**2); ## Momentum of the proton, giga electron volts per c\n",
"P_n = 6*P_p; ## Momentum of the N(14) ions, giga electron volts\n",
"T_n = math.sqrt(P_n**2+(0.938*14.)**2)-0.938*14; ## Kinetic energy of the accelerated nitrogen ion\n",
"print'%s %.2f %s'%(\"\\nThe kinetic energy of the accelerated nitrogen ion = \",T_n,\" MeV\");\n",
"\n",
"## Result\n",
"## The kinetic energy of the accelerated nitrogen ion = 8.43 MeV \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The kinetic energy of the accelerated nitrogen ion = 8.43 MeV\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex12-pg539"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa11.12 : : Page-539 (2011)\n",
"#calculate maximum magnetic flux density and maximum frequency of the accerlating voltage\n",
"import math\n",
"e = 1.6e-19; ## Charge of an electron, C\n",
"R = 9.144; ## Radius, metre\n",
"m_p = 1.67e-027; ## Mass of the proton, Kg\n",
"E = 3.6*1.6e-13; ## Energy, joule\n",
"L = 3.048; ## Length of the one synchrotron section, metre \n",
"T = 3; ## Kinetic energy, giga electron volts\n",
"c = 3e+08; ## Velocity of the light, metre per sec\n",
"m_0_c_sq = 0.938; ## Relativistic energy, mega electron volts\n",
"B = round (math.sqrt(2*m_p*E)/(R*e)*10**4); ## Maximum magnetic field density, web per square metre\n",
"v = B*10**-4*e*R/m_p; ## Velocity of the proton, metre per sec\n",
"f_c = v/(2*math.pi*R*10**6); ## Frequency of the circular orbit, mega cycles per sec\n",
"f_0 = 2*math.pi*R*f_c*10**3/(2*math.pi*R+4*L); ## Reduced frequency, kilo cycles per sec\n",
"B_m = 3.33*math.sqrt(T*(T+2*m_0_c_sq))/R; ## Relativistic field, web per square metre\n",
"f_0 = c**2*e*R*B*1e-004/((2*math.pi*R+4*L)*(T+m_0_c_sq)*e*1e+015); ## Maximum frequency of the accelerating voltage, mega cycles per sec\n",
"print'%s %.2f %s %.2f %s '%(\"\\nThe maximum magnetic flux density = \",B_m,\" weber/Sq.m\"and \"\\nThe maximum frequency of the accelerating voltage = \",f_0,\" MHz\");\n",
" \n",
"## Result\n",
"## The maximum magnetic flux density = 1.393 weber/Sq.m\n",
"## The maximum frequency of the accelerating voltage = 0.09 MHz\n",
"## Answer is given wrongly in the textbook \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The maximum magnetic flux density = 1.39 \n",
"The maximum frequency of the accelerating voltage = 0.09 MHz \n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex13-pg539"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate energy of the proton\n",
"## Exa11.13 : : Page-539 (2011)\n",
"import math\n",
"E_c = 30e+009; ## Energy of the proton accelerator, GeV\n",
"m_0_c_sq = 0.938*10**6; ## Relativistic energy, GeV\n",
"E_p = (4*E_c**2-2*m_0_c_sq**2)/(2*m_0_c_sq) ; ## Energy of the proton, GeV\n",
"print'%s %.2f %s'%(\"\\nThe energy of the proton = \",E_p/1e+009,\" GeV\");\n",
"print(\"wrong answer in the textbook\")\n",
"## Result\n",
"## The energy of the proton = 1.92e+006 GeV \n",
"## Wrong answer given in the textbook"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The energy of the proton = 1918976.54 GeV\n",
"wrong answer in the textbook\n"
]
}
],
"prompt_number": 1
}
],
"metadata": {}
}
]
}
|