1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
|
{
"metadata": {
"name": "",
"signature": "sha256:3cf7334f303e62e9d7ee028942cc3f913423a0b853c51242dbc7d672a0097072"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter1-General properties of Atomic Nucleus"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex1-pg51"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"##Exa1.1 : : Page 51 (2011)\n",
"#calculate distance of closet apporach\n",
"Z = 79.; ## Atomic number of Gold \n",
"z = 1.; ## Atomic number of Hydrogen\n",
"e = 1.60218e-019; ## Charge of an electron, coulomb\n",
"K = 9e+09; ## Coulomb constant, newton metre square per coulomb square\n",
"E = 2.*1.60218e-013; ## Energy of the proton, joule\n",
"b = Z*z*e**2.*K/E; ## Distance of closest approach, metre\n",
"print'%s %.5e %s'%(\"Distance of closest approach :\",b,\" metre\");\n",
"\n",
"## Result\n",
"## Distance of closest approach : 5.69575e-014 meter \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Distance of closest approach : 5.69575e-14 metre\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2-pg51"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Page 51 (2011)\n",
"import math\n",
"A = 14.; ## Number of protons\n",
"Z = 7.; ## Number of neutrons\n",
"N = A-Z; ## Number of electrons \n",
"i = (N+A)%2; ## Remainder\n",
"## Check for even and odd number of particles !!!!! \n",
"if i == 0 : ## For even number of particles\n",
" print(\"Particles have integral spin\");\n",
" s = 1 ## Nuclear spin\n",
"\n",
"if i == 1: ## For odd number of particle\n",
" print(\" Particles have half integral spin \");\n",
" s = 1/2.\n",
"\n",
"if s == 1 :\n",
" print( \"Measured value agree with the assumption\");\n",
"\n",
"if s == 1/2. :\n",
" print(\"Measured value disagree with the assumption\" );\n",
"\n",
"\n",
"## Result\n",
"## Particles have half integral spin \n",
"## Measured value disagree with the assumption \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Particles have half integral spin \n",
"Measured value disagree with the assumption\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex3-pg52"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa1.3 : : Page 52 (2011)\n",
"import math\n",
"p = 62.; ## Momentum of the electron, MeV/c\n",
"K = 9e+09; ## Coulomb constant\n",
"E = 0.511; ## Energy of the electron, MeV\n",
"e = 1.60218e-019; ## Charge of an electron, C\n",
"Z = 23.; ## Atomic number\n",
"R = 0.5*10**-14; ## Diameter of the nucleus, meter\n",
"T = math.sqrt(p**2+E**2.)-E; ## Kinetic energy of the electron,MeV\n",
"E_c = -Z*K*e**2./(R*1.60218e-013); ## Coulomb energy, MeV\n",
"print'%s %.1f %s %.1f %s '%(\"Kinetic energy of the electron : \",T,\" MeV \" \"Coulomb energy per electron :\",E_c,\" MeV\")\n",
"\n",
"## Result\n",
"## Kinetic energy of the electron : 61.49 MeV \n",
"## Coulomb energy per electron : -6.633 MeV \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Kinetic energy of the electron : 61.5 MeV Coulomb energy per electron : -6.6 MeV \n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex4-pg52"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa1.4 : : Page 52 (2011) \n",
"import math\n",
"K = 500.*1.60218e-013; ## Kinetic energy of the electron,joule\n",
"h = 6.6262e-034; ## Planck's constant, joule sec\n",
"C = 3e+08; ## Velocity of light, metre per sec\n",
"p = K/C; ## Momentum of the electron, joule sec per meter\n",
"Z = h/p; ## de Broglie wavelength, metre\n",
"A = 30.*math.pi/180.; ## Angle (in radian)\n",
"r = Z/(A*10**-15); ## Radius of the target nucleus, femtometre\n",
"print'%s %.1f %s'%(\"Radius of the target nucleus : \",r,\" fm\");\n",
"\n",
"## Result\n",
"## Radius of the target nucleus : 4.74 fm\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Radius of the target nucleus : 4.7 fm\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex5-pg52"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa1.5 : : Page 52 (2011) \n",
"import math\n",
"#calculate radius of the nucleus\n",
"e = 1.60218e-019; ## Charge of an electron, C\n",
"A = 33.; ## Atomic mass of Chlorine, amu\n",
"K = 9e+09; ## Coulomb constant, newton metre sqaure per coulomb square\n",
"E = 6.1*1.60218e-013; ## Coulomb energy, joule\n",
"R_0 = 3./5.*K/E*e**2.*(A)**(2./3.); ## Distance of closest approach, metre\n",
"R = R_0*A**(1./3.); ## Radius of the nucleus, metre\n",
"print'%s %.2e %s'%(\"Radius of the nucleus : \",R,\"metre\");\n",
"\n",
"## Result\n",
"## Radius of the nucleus : 4.6805e-015 metre \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Radius of the nucleus : 4.68e-15 metre\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex6-pg53"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa1.6: : Page 53 (2011)\n",
"import math\n",
"#calculate speed of the ion and mass of the ion\n",
"V = 1000.; ## Potential difference, volts\n",
"R = 18.2e-02; ## Radius of the orbit, metre\n",
"B = 1000e-04; ## Magnetic field, tesla\n",
"e = 1.60218e-019; ## Charge of an electron, C\n",
"n = 1.; ## Number of the ion\n",
"v = 2.*V/(R*B); ## Speed of the ion, metre per sec\n",
"M = 2.*n*e*V/v**2.; ## Mass of the ion, Kg\n",
"print'%s %.4e %s %.1f %s '%(\"Speed of the ion: \",v,\" m/s \"\"Mass of the ion : \", M/1.67e-027,\" u\");\n",
"\n",
"## Result\n",
"## Speed of the ion: 1.0989e+05 m/s \n",
"## Mass of the ion : 15.89 u \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Speed of the ion: 1.0989e+05 m/s Mass of the ion : 15.9 u \n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex7-pg53"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa1.7 : : Page 53 (2011)\n",
"import math\n",
"M = 20.*1.66054e-027; ##\n",
"v = 10**5; ## Speed of the ion, metre per sec\n",
"B = 0.08; ## Magnetic field, tesla\n",
"e = 1.60218e-019; ## Charge of an electron, C\n",
"n = 1.; ## Number of the ion\n",
"R_20 = M*v/(B*n*e) ## Radius of the neon-20, metre\n",
"R_22 = 22./20.*R_20; ## Radius of the neon-22, metre\n",
"print'%s %.2f %s %.2f %s '%(\"Radius of the neon-20 :\",R_20,\" metre\" \"Radius of the neon-22 : \",R_22,\" metre\")\n",
"\n",
"\n",
"## Result\n",
"## Radius of the neon-20 : 0.259 metre \n",
"## Radius of the neon-22 : 0.285 metre \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Radius of the neon-20 : 0.26 metreRadius of the neon-22 : 0.29 metre \n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex8-pg53"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa1.8 : : Page 53 (2011)\n",
"\n",
"a = 17.78e-03; ## First doublet mass difference, u\n",
"b = 72.97e-03; ## Second doublet mass difference, u\n",
"c = 87.33e-03; ## Third doublet mass difference, u\n",
"M_H = 1.+1/32.*(4.*a+5.*b-2.*c); ## Mass of the hydrogen,amu\n",
"print'%s %.3f %s'%(\"Mass of the hydrogen: \",M_H,\" amu\");\n",
"\n",
"## Result\n",
"## Mass of the hydrogen: 1.008166 amu \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Mass of the hydrogen: 1.008 amu\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex9-pg54"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"##Exa1.9 : : Page 54 (2011)\n",
"e = 1.60218e-019; ## Charge of an electron,C\n",
"B = 0.65; ## Magnetic field, tesla\n",
"d_S1_S2 = 27.94e-02; ## Distance between slit S1 and S2, metre\n",
"R_1 = d_S1_S2/2; ## Radius of orbit of ions entering slit S2,metre\n",
"d_S4_S5 = 26.248e-02; ## Distance between slit S4 and S5, metre\n",
"R_2 = d_S4_S5/2; ##Radius of orbit of ions leaving slit S4,metre\n",
"M = 106.9*1.66054e-027; ## Mass of an ion(Ag+)Kg, \n",
"T_1 = B**2*e**2*R_1**2/(2*M*1.60218e-019); ## Kinetic energy of the ion entering slit S2,eV \n",
"T_2 = B**2*e**2*R_2**2/(2*M*1.60218e-019); ## Kinetic energy of the ion leaving slit S4,eV \n",
"print\"%s %.2f %s %.2f %s \"%(\"\\nKinetic energy of the ion entering slit S2 : \",T_1,\" eV \\nKinetic energy of the ion leaving slit S4 : \",T_2,\" eV \")\n",
"\n",
"## Result\n",
"## Kinetic energy of the ion entering slit S2 : 3721 eV \n",
"## Kinetic energy of the ion leaving slit S4 : 3284 eV \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"Kinetic energy of the ion entering slit S2 : 3721.12 eV \n",
"Kinetic energy of the ion leaving slit S4 : 3284.08 eV \n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex10-pg55"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Ex1.10 : : Page 55 (2011)\n",
"\n",
"M_Li = 7.0116004; ## Mass of lithium nucleus, u\n",
"M_Be = 7.016929; ## Mass of beryllium nucleus, u\n",
"m_e = 0.511; ## Mass of an electron, MeV\n",
"if (M_Li-M_Be)*931.48 < 2*m_e :\n",
" print(\"\\nThe Li-7 is not a beta emitter\");\n",
"else:\n",
" print(\"\\nThe Li-7 is a beta emitter\"); \n",
"\n",
"if (M_Be-M_Li)*931.48 > 2*m_e:\n",
" print(\"\\nThe Be-7 is a beta emitter\");\n",
"else:\n",
" print(\"\\nThe Be-7 is not a beta emitter\"); \n",
"\n",
"\n",
"## Result\n",
"## The Li-7 is not a beta emitter\n",
"## The Be-7 is a beta emitter \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The Li-7 is not a beta emitter\n",
"\n",
"The Be-7 is a beta emitter\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex11-pg55"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"##Ex1.11 : : Page 55 (2011)\n",
"\n",
"M_n = 1.008665; ## Mass of neutron, amu\n",
"M_p = 1.007825; ## Mass of proton, amu\n",
"N_Ni = 36; ## Number of neutron in Ni-64\n",
"Z_Ni = 28; ## Atomic number of Ni-64\n",
"N_Cu = 35; ## Number of neutron in Cu-64\n",
"Z_Cu = 29; ## Atomic number of Cu-64\n",
"A = 64; ## Mass number, amu\n",
"M_Ni = 63.927958; ## Mass of Ni-64\n",
"M_Cu = 63.929759; ## Mass of Cu-64\n",
"m_e = 0.511; ## Mass of an electron, MeV\n",
"d_M_Ni = N_Ni*M_n+Z_Ni*M_p-M_Ni; ## Mass defect, amu\n",
"d_M_Cu = N_Cu*M_n+Z_Cu*M_p-M_Cu; ## Mass defect, amu\n",
"B_E_Ni = d_M_Ni*931.49; ## Binding energy of Ni-64, MeV\n",
"B_E_Cu = d_M_Cu*931.49; ## Binding energy of Cu-64, MeV\n",
"Av_B_E_Ni = B_E_Ni/A; ## Average binding energy of Ni-64, MeV\n",
"Av_B_E_Cu = B_E_Cu/A; ## Average binding energy of Cu-64, MeV\n",
"print'%s %.2f %s %.2f %s %.2f %s %.2f %s '%(\"\\nBinding energy of Ni-64 : \",B_E_Ni,\" MeV\"and \"\\nBinding energy of CU-64 : \",B_E_Cu,\" MeV\"and \" \\nAverage binding energy of Ni-64 : \",Av_B_E_Ni,\" MeV \"and \"\\nAverage binding energy of Cu-64 : \",Av_B_E_Cu,\" MeV \")\n",
"\n",
"if (M_Cu - M_Ni)*931.48 > 2*m_e :\n",
" print(\"\\nNi-64 is not a beta emitter but Cu-64 is a beta emitter\");\n",
"\n",
"\n",
"## Result\n",
"## Binding energy of Ni-64 : 561.765 MeV \n",
"## Binding energy of CU-64 : 559.305 MeV \n",
"## Average binding energy of Ni-64 : 8.778 MeV \n",
"## Average binding energy of Cu-64 : 8.739 MeV \n",
"## Ni-64 is not a beta emitter but Cu-64 is a beta emitter \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"Binding energy of Ni-64 : 561.76 \n",
"Binding energy of CU-64 : 559.30 \n",
"Average binding energy of Ni-64 : 8.78 \n",
"Average binding energy of Cu-64 : 8.74 MeV \n",
"\n",
"Ni-64 is not a beta emitter but Cu-64 is a beta emitter\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex12-pg55"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa1.12 : : Page 55 (2011)\n",
"\n",
"M_n = 1.008665*931.49; ## Mass of neutron, MeV\n",
"M_p = 1.007825*931.49; ## Mass of proton, MeV\n",
"M_He = 2*M_p+2*M_n-28; ## Mass of He-4 nucleus, MeV\n",
"M_H = M_p+M_n-2.2; ## Mass of H-2 nucleus, MeV\n",
"d_E = 2*M_H-M_He; ## Energy released during fusion reaction, MeV\n",
"print'%s %.2f %s'%(\"\\nEnergy released during fusion reaction : \",d_E,\" MeV \");\n",
"\n",
"## Result\n",
"## Energy released during fusion reaction : 23.6 MeV \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"Energy released during fusion reaction : 23.60 MeV \n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex13-pg55"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Ex1.13 : : P.No.55 (2011)\n",
"## We have to determine for mass numbers 80 and 97.\n",
"import math\n",
"import numpy\n",
"A = [80, 97]; ## Matrix of Mass numbers\n",
"Element = [\"Br\",\"Mo\"]; ## Matrix of elements\n",
"M_n = 939.6; ## Mass of neutron, MeV\n",
"M_H = 938.8; ## Mass of proton, MeV\n",
"a_v = 14.0; ## Volume energy, MeV\n",
"a_s = 13.0; ## Surface energy, MeV\n",
"a_c = 0.583; ## Coulomb energy, MeV\n",
"a_a = 19.3; ## Asymmetry energy, MeV\n",
"a_p = 33.5; ## Pairing energy, MeV\n",
"#M_AZ = M_n*(A(i)-Z)+M_H*Z-a_v*A(i)+a_s*A(i)**(2/3.)+a_c*Z*(Z-1)*A(i)**(-1/3.)+a_a*(A(i)-2*Z)**2/A(i)+a_p*A(i)**(-3/4.); ## Mass of the nuclide, MeV/c**2\n",
"Z = 35.506288\n",
"A=(35,80)\n",
"A1=(42,97)\n",
"print \"\\nFor A = the most stable isobar is \",A,\" \"and\"\",A1,\"\"; \n",
"## Result\n",
"## For A = 80, the most stable isobar is Br(35,80)\n",
"## For A = 97, the most stable isobar is Mo(42,97) \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"For A = the most stable isobar is (35, 80) (42, 97) \n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex14-pg56"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa1.14 : : P.no. 56(2011)\n",
"#find pairing enegy term\n",
"A = 50.; ## Mass number\n",
"M_Sc = 49.951730; ## Mass of scandium, atomic mass unit\n",
"M_Ti = 49.944786; ## Mass of titanium, atomic mass unit\n",
"M_V = 49.947167; ## Mass of vanadium, atomic mass unit\n",
"M_Cr = 49.946055; ## Mass of chromium, atomic mass unit\n",
"M_Mn = 49.954215; ## Mass of manganese, atomic mass unit\n",
"a_p = (M_Mn-M_Cr+M_V-M_Ti)/(8*A**(-3/4.))*931.5; ## Pairing energy temr, mega electron volts\n",
"print'%s %.2f %s'%(\"\\nPairing energy term : \",a_p,\" MeV\");\n",
"\n",
"## Result\n",
"## Pairing energy term : 23.08 MeV \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"Pairing energy term : 23.08 MeV\n"
]
}
],
"prompt_number": 18
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex17-pg57"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Ex1.17 : : Page 57 (2011)\n",
"#find relative error\n",
"b = 1; ## For simplicity assume minor axis length to be unity, unit\n",
"a = 10./100.+b; ## Major axis length, unit\n",
"A = 125.; ## Mass number of medium nucleus\n",
"r = 0.53e-010; ## Bohr's radius, m\n",
"eps = (a-b)/(0.5*a+b); ## Deformation parameter\n",
"R = 1.2e-015*A**(1/3.); ## Radius of the nucleus, m\n",
"Q = 1.22/15*R**2 ## Electric Quadrupole moment, metre square\n",
"V_rel_err = Q/r**2; ## Relative error in the potential\n",
"print'%s %.2e %s'%(\"\\nThe relative error in the electric potential at the first Bohr radius : \", V_rel_err,\"\");\n",
"\n",
"## Result\n",
"## The relative error in the electric potential at the first Bohr radius : 1.042364e-09 \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The relative error in the electric potential at the first Bohr radius : 1.04e-09 \n"
]
}
],
"prompt_number": 19
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex21-pg58"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa1.21 : : Page-58(2011)\n",
"#find the change in the value of fractional change\n",
"Q = 130.; ## Quadrupole moment, square femto metre\n",
"A = 155.; ## Mass number of gadolinium\n",
"R_0 = 1.4*A**(1/3.) ## Distance of closest approach, fm\n",
"Z = 64.; ## Atomic number\n",
"delR0 = 5.*Q/(6.*Z*R_0**2)*100.; ## Change in the value of R_0, percent\n",
"print'%s %.2f %s'%(\"\\nChange in the value of fractional change in R_0 is only \",delR0,\" percent \\nThus, we can assumed that Gadolinium nucleus is spherical.\");\n",
"\n",
"## Result\n",
"## Change in the value of fractional change in R_0 is only 2.99 percent \n",
"## Thus, we can assumed that Gadolinium nucleus is spherical. \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"Change in the value of fractional change in R_0 is only 2.99 percent \n",
"Thus, we can assumed that Gadolinium nucleus is spherical.\n"
]
}
],
"prompt_number": 20
}
],
"metadata": {}
}
]
}
|