1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
|
{
"metadata": {
"name": "",
"signature": "sha256:4b902b7e06643df09d54725c85a046b0d243304126721453ed87eafe8f5d46d6"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter7: Wind Energy"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex7.1:Pg-216"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# given data\n",
"import math\n",
"rho=1.226 # air density in kG/m^3\n",
"alpha =0.14\n",
"H=10.0 # height at which wind speed is given in m\n",
"uH=12.0 # speed in m/s\n",
"z=100.0 # tower height in m\n",
"D=80.0 # diameter in m\n",
"effigen=0.85 # efficiency og generator\n",
"\n",
"A=math.pi*(D**2)/4 # area in m^3\n",
"u0=uH*(z/H)**alpha # velocity at 100 m in m/s\n",
"u1=0.8*u0 # exit velocity in m/s \n",
"Po=(A*rho*u0**3)/2 # Total Power in Wind\n",
"# Part 1 \n",
"print \"Total Power in Wind is \",round(Po/1000000,2),\"MW\"\n",
"\n",
"# Part 2\n",
"a=(u0-u1)/u0 # interference factor\n",
"Cp=4*a*(1-a)**2 # Power Coefficient\n",
"PT=Cp*Po/1000000 # power to turbine in MW\n",
"\n",
"print \"The power extracted by turbine is \",round(PT,2),\"MW\"\n",
"\n",
"# Part 3\n",
"Pelec=effigen*PT # electrical power generated in MW\n",
"\n",
"print \"The Electrical power generated is \",round(Pelec,2),\"MW\"\n",
"\n",
"# Part 4\n",
"FA=4*a*(1-a)*(A*rho*u0**2)/2 # axial thrust in N\n",
"\n",
"print \"The axial thrust is \",round(FA,2),\"N\"\n",
"\n",
"# Part 5\n",
"\n",
"Fmax=(A*rho*u0**2)/2 # maximum thrust in N\n",
"print \"Maximum axial thrust is \",round(Fmax,2),\"N\"\n",
"\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Total Power in Wind is 14.0 MW\n",
"The power extracted by turbine is 7.17 MW\n",
"The Electrical power generated is 6.09 MW\n",
"The axial thrust is 541094.1 N\n",
"Maximum axial thrust is 845459.53 N\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex7.2:Pg-216"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# given data\n",
"import math\n",
"u0=20.0 # wind speed in m/s\n",
"T=273+27.0 # temp in kelvin\n",
"P=1.01325e5 # pressure in Pa\n",
"R=287.0 # gas constant\n",
"r=80/2.0 # radius of rotor in m\n",
"w=2*math.pi*40/60.0 # rotor speed in rad/s\n",
"A=math.pi*r**2 # area of rotor in m^2\n",
"\n",
"# soln:\n",
"rho=P/(R*T) # density in Kg/m^3\n",
"a=1/3.0 # condition for maximum output\n",
"Cpmax=4*a*(1-a)**2 # Power Coefficient\n",
"Lambda=r*w/u0 #tip speed ratio\n",
"\n",
"Po=(A*rho*u0**3)/2000000 # Total Power in Wind in W\n",
"\n",
"Tm=Po*r/u0 # Torque in N\n",
"\n",
"Ctmax=Cpmax/Lambda # torque coefficient \n",
"\n",
"Tshmax=Tm*Ctmax # torque at shaft\n",
"\n",
"print \"The torque at shaft for maximum output is \",round(Tshmax,2),\"N\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The torque at shaft for maximum output is 3.35 N\n"
]
}
],
"prompt_number": 30
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex7.3:Pg-217"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Given Data\n",
"# given data\n",
"import math\n",
"u0=15.0 # wind speed in m/s\n",
"R=80/2.0 # radius of rotor in m\n",
"n=3 # number of blades\n",
"\n",
"Lambda=4*math.pi/n # condition of tip ratio for maximum output\n",
"\n",
"w=Lambda*u0/R # using Eq 7.21 rotor speed in rad/s\n",
"\n",
"N=w*60/(2*math.pi) # rotor speed in RPM\n",
"\n",
"print \"For optimum energy the rotor speed should be\",N,\"rpm\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"For optimum energy the rotor speed should be 15.0 rpm\n"
]
}
],
"prompt_number": 31
}
],
"metadata": {}
}
]
}
|