1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
|
{
"metadata": {
"name": "",
"signature": "sha256:19f2a8cb1c6de61d0a56800f8e56bd9bad7dc4e03b58a655a7a7ff910f23e6d6"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 6: Solar Photovoltaic Systems"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex6.1:Pg-162"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Given data :\n",
"import math\n",
"T=27 +273 # temperature converted in kelvin\n",
"NV=1e22 # effective density of states in valence band in cm^(-3)\n",
"NA=1e19 # acceptor density in cm^(-3)\n",
"k=8.629*10**(-5) # boltzmann constant in eV/K\n",
"EFV=k*T*math.log(NV/NA) # closeness of fermi level i.e Ef-Ev\n",
"print \"Closeness of fermi level with valence bond is\",round(EFV,4),\"eV\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Closeness of fermi level with valence bond is 0.1788 eV\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex6.2:Pg-165"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Given data :\n",
"E =2.42 # Band gap in eV\n",
"hc=1.24 # planck's constant * speed of light\n",
"# solution\n",
"Lambda=1.24/E # in micro-meter usinf eq 6.4\n",
"\n",
"print \"The optimum wavelength is \",round(Lambda,3),\" micro meter\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The optimum wavelength is 0.512 micro meter\n"
]
}
],
"prompt_number": 20
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex6.3:Pg-182"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Given data :\n",
"Pout=1*735 # motor power output in W\n",
"Peffi=0.85 # motor efficiency\n",
"cellarea=9*4*125*125e-6 # area in m^2 \n",
"Rad=1000 #incident radiation in kW/m^2\n",
"celleffi=0.12 # cell efficiency\n",
"\n",
"# soln.\n",
"Pin=Pout/Peffi # power req by motor in W\n",
"N=Pin/(Rad*cellarea*celleffi) # number of modules\n",
"\n",
"print round(N),\" number of modules are required\" \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"13.0 number of modules are required\n"
]
}
],
"prompt_number": 22
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex6.4:Pg-185"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# given:\n",
"noMPPTpower=10*8 # power without MPPT in W from fig 6.25\n",
"MaxP=25*5 # maximum power by PV module in W from fig 6.25\n",
"effi=0.95 # efficiency of MPPT\n",
"MPPTcost=4000 # Cost in rupees\n",
"# Soln\n",
"Pact=MaxP*effi # actual power produced in W\n",
"Psurplus=Pact-noMPPTpower # Surplus power in W\n",
"t=MPPTcost/(3*Psurplus/1000) # time required in hours \n",
"print \"time required is \",round(t,2),\"hours\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"time required is 34408.6 hours\n"
]
}
],
"prompt_number": 24
}
],
"metadata": {}
}
]
}
|