1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
|
{
"metadata": {
"name": "",
"signature": "sha256:7f40e58996047c1cb062bf18947910b9a976381238ed50505c43ba92251b46eb"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter9-Energy from the Oceans"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.3.5.1-pg 527"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"##Ex9.3.5.1.;Calculate Energy generated\n",
"import math\n",
"R=12.;##unit=m; R is the range\n",
"r=3.;##unit=m; the head below turbine stops operating\n",
"time=(44700./2.);\n",
"A=30*10**6;\n",
"g=9.80;\n",
"p=1025.;\n",
"##The total theoretical work W=integrate('1','w',R,r);\n",
"W=(g*p*A*((R**2)-(r**2)))/2.;\n",
"print'%s %.2f %s'%(\" W=\",W,\" \");\n",
"##The average power generated\n",
"Pav=W/time;##unit=watts\n",
"print'%s %.2f %s'%(\"\\n The average power generated=\",Pav,\" watts\");\n",
"pav=(Pav/1000.)*3600.;##unit=kWh\n",
"print'%s %.2f %s'%(\"\\n The average power generated=\",pav,\" kWh\")\n",
"##the energy generated\n",
"Energy_generated=pav*0.73\n",
"print'%s %.2f %s'%(\"\\n Energy generated=\",Energy_generated,\" kWh\");\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" W= 20341125000000.00 \n",
"\n",
" The average power generated= 910117449.66 watts\n",
"\n",
" The average power generated= 3276422818.79 kWh\n",
"\n",
" Energy generated= 2391788657.72 kWh\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.3.6.1-pg529"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"##Ex9.3.6.1;calculate power in h.p. at any instant and the yearly power output\n",
"import math\n",
"A=0.5*10**6;##unit=m\n",
"h0=8.5;##unit=m\n",
"t=3*3600.##unit=s; since t=3 hr\n",
"p=1025.;##unit=kg/m^3\n",
"h=8.;##unit=m\n",
"n0=0.70;##efficiency of the generator;70%\n",
"##volume of the basin=Ah0\n",
"volume_of_the_basin=A*h0;\n",
"##Average discharge Q=volume/time period\n",
"Q=(A*h0)/t;\n",
"print'%s %.2f %s %.2f %s '%(\" volume of the basin=\",volume_of_the_basin,\" m^3\"and \" \\n Average discharge Q=\",Q,\" m^3 /s\")\n",
"##power at any instant\n",
"P=((Q*p*h)/75)*n0;\n",
"print'%s %.2f %s'%(\"\\n power at any instant P=\",P,\" h.p.\");\n",
"##The total energy in kWh/tidal cycle\n",
"E=P*0.736*3;\n",
"print'%s %.2f %s'%(\"\\n The total energy in kWh/tidal cycle E=\",E,\"\");\n",
"##Total number of tidal cycle in a year=705\n",
"print(\"\\n Total number of tidal cycle in a year=705\");\n",
"##Therefore Total output per annum\n",
"Total_output_per_annum=E*705;\n",
"print'%s %.2f %s'%(\"\\n Total output per annum= \",Total_output_per_annum,\"kWh/year\");\n",
"\n",
"##The value of \"power of instant\" in a text book is misprinted.\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" volume of the basin= 4250000.00 \n",
" Average discharge Q= 393.52 m^3 /s \n",
"\n",
" power at any instant P= 30117.28 h.p.\n",
"\n",
" The total energy in kWh/tidal cycle E= 66498.96 \n",
"\n",
" Total number of tidal cycle in a year=705\n",
"\n",
" Total output per annum= 46881768.89 kWh/year\n"
]
}
],
"prompt_number": 3
}
],
"metadata": {}
}
]
}
|