summaryrefslogtreecommitdiff
path: root/Non-conventional_Energy_Sources_by_G._D._Rai/Chapter8_1.ipynb
blob: 6e5345c625b3fdac61bb17d834406b97456e314b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
{
 "metadata": {
  "name": "",
  "signature": "sha256:f4925d0b2e463188ddde753ce40d3c66c53a733743431193f8411c4532c3afc1"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter8-Geothermal Energy"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.5.1-pg 450"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "##Ex8.5.1.;calculate: steam flow rate,cooling water flow,plant efficiency,Heat rate\n",
      "\n",
      "##Enthalpy at point 1 at (31 kg/cm^2)=669.6 kcal/kg\n",
      "##H1=H2=H3,enthalpy remain constant during throttling\n",
      "H1=669.7;##unit= kcal/kg\n",
      "H2=669.7;##unit= kcal/kg\n",
      "H3=669.7;##unit= kcal/kg\n",
      "##At point 3,\n",
      "P3=9.55;##unit= kg/cm^2\n",
      "##specific volume\n",
      "vs3=0.22;##unit=m^3/kg\n",
      "##Entropy\n",
      "S3=1.580\n",
      "T3=190.;##unit=degree C,(degree of superheat=13 degree C)\n",
      "##S4_s at 0.34 kg/cm^2=S3\n",
      "##x4_s=0.838\n",
      "##and H4_s=hs+xL\n",
      "H4_s=72.+(0.838*556)\n",
      "print'%s %.2f %s'%(\" H4_s=\",H4_s,\" kcal/kg\")\n",
      "##Isentropic turbine work=H3-H4_s\n",
      "ITW=H3-H4_s;\n",
      "print'%s %.2f %s'%(\"\\n Isentropic turbine work=\",ITW,\" kcal/kg\");\n",
      "##Actual turbine work\n",
      "ATW=0.80*ITW;\n",
      "print'%s %.2f %s'%(\"\\n Actual turbine work=\",ATW,\" kcal/kg\");\n",
      "H4=669.7-ATW;\n",
      "print'%s %.2f %s'%(\"\\n H4=\",H4,\" kcal/kg\")\n",
      "h5_6=72;##unit= kcal/kg; (Ignoring pump work)\n",
      "##sensible heat   h7=h5=25 kcal/kg\n",
      "h5=25;##unit=kcal/kg\n",
      "h7=25;##unit=kcal/kg\n",
      "##Turbine steam flow\n",
      "TSF=(250*0.860*10**6)/(ATW*0.9);\n",
      "print'%s %.2f %s'%(\"\\n Turbine steam flow=\",TSF,\" kg/hr\");\n",
      "##let\n",
      "m4=TSF;\n",
      "##Turbine volume flow\n",
      "TVF=(TSF/60)*vs3;\n",
      "print'%s %.2f %s'%(\"\\n Turbine volume flow=\",TVF,\" m^3/min\");\n",
      "##cooling water flow m7:m7(h5_6-h7)=m4(H4-h5_6)\n",
      "m7=((H4-h5_6)/(h5_6-h7))*m4;\n",
      "print'%s %.2f %s'%(\"\\n cooling water flow m7=\",m7,\" kg/hr\");\n",
      "Heat_added=H1-h5_6;\n",
      "print'%s %.2f %s'%(\"\\n Heat_added=\",Heat_added,\" kcal/kg\");\n",
      "##plant efficiency=(Actual Turbine work*nmg)/Heat added\n",
      "##nmg=combined mechanical and electrical efficiency of turbine-generator\n",
      "nmg=0.90;\n",
      "Plant_efficiency=(ATW*nmg)/Heat_added;\n",
      "plant_efficiency=Plant_efficiency*100.;\n",
      "print'%s %.2f %s'%(\"\\n Plant Efficiency nplant=\",plant_efficiency,\" persent\");\n",
      "##Plant heat rate=(860*Heat_added)/net_work\n",
      "##net_work=105.36*0.90\n",
      "Plant_heat_rate=(860./Plant_efficiency);\n",
      "print'%s %.2f %s'%(\"\\n Plant heat rate=\",Plant_heat_rate,\" kcal/kWH\");\n",
      "\n",
      "\n",
      "##The value of \"turbine steam flow\" is wrong due to calculating mistak in textbook,due to which the further value related with it is given wrong\n",
      "##The values are corrected in this program\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " H4_s= 537.93  kcal/kg\n",
        "\n",
        " Isentropic turbine work= 131.77  kcal/kg\n",
        "\n",
        " Actual turbine work= 105.42  kcal/kg\n",
        "\n",
        " H4= 564.28  kcal/kg\n",
        "\n",
        " Turbine steam flow= 2266119.59  kg/hr\n",
        "\n",
        " Turbine volume flow= 8309.11  m^3/min\n",
        "\n",
        " cooling water flow m7= 23735548.77  kg/hr\n",
        "\n",
        " Heat_added= 597.70  kcal/kg\n",
        "\n",
        " Plant Efficiency nplant= 15.87  persent\n",
        "\n",
        " Plant heat rate= 5417.84  kcal/kWH\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.5.2-pg460"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "##Ex8.5.2.;calculate: hot water flow,condenser cooling water flow,cycle efficiency,plant heat rate.\n",
      "import math\n",
      "H1=669.6;##unit=kcal/kg\n",
      "H2=669.6;##unit=kcal/kg\n",
      "##pressure at point 2,is 10.5 kg/cm^2;thus,\n",
      "T2=195.;##unit=degree celcius; (14 degree celcius of superheat)\n",
      "s2=1.567;\n",
      "vsup=0.27;\n",
      "x3s=0.832;\n",
      "H3s=535.;##unit=kcal/kg\n",
      "##Isentropic turbine work\n",
      "ITW=H2-H3s;\n",
      "print'%s %.2f %s'%(\" Isentropic turbine work=\",ITW,\" kcal/kg\");\n",
      "##Actual turbine work\n",
      "ATW=0.65*ITW;\n",
      "print'%s %.2f %s'%(\"\\n Actual turbine work=\",ATW,\" kcal/kg\");\n",
      "H3=669.6-ATW;\n",
      "print'%s %.2f %s'%(\"\\n H3=\",H3,\" kcal/kg\")\n",
      "##h_4-5(ignore bpump work)\n",
      "h4=72.4;##unit=kcal/kg\n",
      "##h6 at 27 degree c\n",
      "h6=27;##unit=kcal/kg\n",
      "##Turbine steam flow or hot water flow=power output/actual turbine work\n",
      "TSF=(10*10**6*0.86)/ATW;\n",
      "print'%s %.2f %s'%(\"\\n Turbine steam flow or hot water flow=\",TSF,\" kg/hr\");\n",
      "##consider cooling water flow  m4:m3*(H3-h4)=m4(h4-h6)\n",
      "##or\n",
      "m4=((582.11-72.4)*0.983*10**5)/(72.4-27);\n",
      "print'%s %.2f %s'%(\"\\n cooling water flow=\",m4,\" kg/hr\");\n",
      "Heat_added=H1-h4\n",
      "print'%s %.2f %s'%(\"\\n Heat_added=\",Heat_added,\" kcal/kg\");\n",
      "##plant efficiency=Turbine work/Heat added\n",
      "Plant_efficiency=(ATW/Heat_added);\n",
      "plant_efficiency=Plant_efficiency*100;\n",
      "print'%s %.2f %s'%(\"\\n Plant Efficiency=\",plant_efficiency,\" persent\");\n",
      "##Plant heat rate=860/Plant Efficiency\n",
      "Plant_heat_rate=860./Plant_efficiency;\n",
      "print'%s %.2f %s'%(\"\\n Plant heat rate=\",Plant_heat_rate,\" kcal/kWh\");\n",
      "\n",
      "\n",
      "##The value of m3=14.03*10^5 is given wrong in the text book;the actual value is m3=11.03*10^5\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " Isentropic turbine work= 134.60  kcal/kg\n",
        "\n",
        " Actual turbine work= 87.49  kcal/kg\n",
        "\n",
        " H3= 582.11  kcal/kg\n",
        "\n",
        " Turbine steam flow or hot water flow= 98296.95  kg/hr\n",
        "\n",
        " cooling water flow= 1103623.19  kg/hr\n",
        "\n",
        " Heat_added= 597.20  kcal/kg\n",
        "\n",
        " Plant Efficiency= 14.65  persent\n",
        "\n",
        " Plant heat rate= 5870.29  kcal/kWh\n"
       ]
      }
     ],
     "prompt_number": 2
    }
   ],
   "metadata": {}
  }
 ]
}