1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
|
{
"metadata": {
"name": "",
"signature": "sha256:4d84c99a98fc36f8db8573496dfc2db7b4d7fab1f15bbd72f54e5f05cedbe4d8"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter3-Solar Energy Collectors"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.6.1-pg100"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"##Ex3.6.1.;calculate: solar altitude anglr,Incident angle,Collector efficiency\n",
"import math\n",
"##Solar declination :delta\n",
"n=1\n",
"delta=23.45*math.sin((360./365.)*(284.+n));\n",
"print'%s %.2f %s'%(\" Solar declination delta=\",delta,\" degree\");\n",
"fie=22.;##degree\n",
"##solar hour angle ws=0,(at mean of 11:30 and 12:30)\n",
"ws=0.;\n",
"##Solar altitude anglr alpha is given by\n",
"\n",
"##alpha=asind(((cos(fie)*cos(delta)*cos(ws))+(sin(fie)*sin(delta)))\n",
"##let\n",
"a=math.cos((22*math.pi)/180.)*math.cos((-23*math.pi)/180.)*math.cos(0);\n",
"b=math.sin((22*math.pi)/180.)*math.sin((-23*math.pi)/180.);\n",
"##therefore\n",
"sin_alpha=a+b;\n",
"print'%s %.2f %s'%(\"\\n sin_aplha=\",sin_alpha,\"\");\n",
"alpha=math.asin(sin_alpha);\n",
"print'%s %.2f %s'%(\"\\n aplha=\",alpha,\"degree\");\n",
"##Incident angle\n",
"theta=(180./2.)-alpha;\n",
"print'%s %.2f %s'%(\"\\n Incident angle=\",theta,\"degree\");\n",
"##Rb is given by\n",
"Rb=((math.cos(((22*math.pi)/180.)-(37*math.pi)/180.)*math.cos((-23*math.pi)/180.)*math.cos(0))+(math.sin(((22*math.pi)/180.)-(37*math.pi)/180)* math.sin((-23*math.pi)/180)))/sin_alpha;\n",
"print'%s %.2f %s'%(\"\\n Rb=\",Rb,\"\");\n",
"##Effective absorptance product is <t.alpha>=t.alpha/ 1-(1-alpha)*pd\n",
"pd=0.24;##Diffuse reflectance for two glass covers\n",
"##let TA=<t.alpha>\n",
"TA=(0.88*0.90)/(1-(1-0.90)*pd);\n",
"print'%s %.2f %s'%(\"\\n Effective absorptance product is <t.alpha>=\",TA,\"\");\n",
"##Solar radiation intensity(consider beam radiation only)\n",
"##Hb=0.5 ly/mm = 0.5 cal/cm^2 * min\n",
"Hb=((0.5*10**4)/10**3)*60;##unit=kcal/m^2 hr\n",
"print'%s %.2f %s'%(\"\\n Hb=\",Hb,\" kcal/m^2 hr\");\n",
"Hb=Hb*1.163;##unit=W/m^2 hr; [since 1 kcal = 1.163 watt]\n",
"print'%s %.2f %s'%(\"\\n Hb=\",Hb,\" W/m^2 hr\");\n",
"##S=Hb*Rb*<t.alpha>\n",
"S=Hb*Rb*TA;\n",
"print'%s %.2f %s'%(\"\\n S=\",S,\" W/m^2 hr\");\n",
"s=S/1.163;\n",
"print'%s %.2f %s'%(\"\\n S=\",s,\" kcal/m^2 hr\");\n",
"##Useful gain\n",
"##qu=FR(S-UL*(Tfi-Ta))\n",
"qu=0.810*(s-(6.80*(60-15)))\n",
"print'%s %.2f %s'%(\"\\n qu=\",qu,\" kcal/m^2 hr\");\n",
"##Qu=FR(S-UL*(Tfi-Ta))\n",
"Qu=0.810*(S-(7.88*(60-15)))\n",
"print'%s %.2f %s'%(\"\\n qu=\",Qu,\" W/m^2 hr\");\n",
"##Collection Efficiency : nc=(qu/(Hb*Rb))*100;\n",
"nc=(28.07/(300*Rb))*100.;\n",
"print'%s %.2f %s'%(\"\\n Collection Efficiency=\",nc,\" persent\");\n",
"\n",
"\n",
"##values of \"sine alpha\" in the textbook is taken approximate to the real values\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Solar declination delta= -23.38 degree\n",
"\n",
" sin_aplha= 0.71 \n",
"\n",
" aplha= 0.79 degree\n",
"\n",
" Incident angle= 89.21 degree\n",
"\n",
" Rb= 1.40 \n",
"\n",
" Effective absorptance product is <t.alpha>= 0.81 \n",
"\n",
" Hb= 300.00 kcal/m^2 hr\n",
"\n",
" Hb= 348.90 W/m^2 hr\n",
"\n",
" S= 396.50 W/m^2 hr\n",
"\n",
" S= 340.93 kcal/m^2 hr\n",
"\n",
" qu= 28.29 kcal/m^2 hr\n",
"\n",
" qu= 33.94 W/m^2 hr\n",
"\n",
" Collection Efficiency= 6.68 persent\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.9.1-pg 119"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"##calculate the useful gain,exit fluid temperature and collection efficiency\n",
"##Optical properties are estimated as\n",
"p=0.85;\n",
"import math\n",
"##(T. alpha)=0.77;let A=(T. alpha)\n",
"A=0.77\n",
"gama=0.94;\n",
"Do=0.06;\n",
"L=8;##unit=meter,##L=length of concentrator\n",
"W=2;##W=width of concentrator in meter\n",
"dco=0.09;##dco=diameter of transpaarent cover\n",
"Ar= math.pi*Do*L;##Ar=area of the receiver pipe\n",
"A_alpha=(W-dco)*L;##aperture area of the concentration\n",
"Cp=0.30;##unit=kcal/kg degree calcius\n",
"m=400;##unit=kg/hr,m=flow rate\n",
"HbRb=600;##unit=kcal/hr m^2\n",
"Tfi=150;##degree calcius\n",
"T_alpha=25;##degree calcius\n",
"##Heat transfer coefficient from fluid inside to surroundings,\n",
"Uo=5.2;##unit=kcal/hr-m^2\n",
"##Heat transfer coefficient from absorber cover surface to surroundings,\n",
"UL=6;##unit=kcal/hr-m^2\n",
"F=(Uo/UL);\n",
"##Heat removed factor FR is\n",
"##FR=((m*Cp)/(Ar*UL))*(1-(%e^-((Ar*UL*F)/(m*Cp))))\n",
"##let X=(m*Cp)/(Ar*UL);Y=(%e^-((Ar*UL*F)/(m*Cp)))\n",
"X=(m*Cp)/(1.51*UL*0.86);\n",
"Y=math.e**(-1/X);\n",
"FR=X*0.86*(1-Y);\n",
"##Absorbed solar energy is\n",
"S=HbRb*p*gama*A;\n",
"print'%s %.2f %s %.2f %s'%(\" Area of the receiver pipe Ar= \",Ar,\"=1.51 m^2\"and\" \\n A_aplha= \",A_alpha,\" m^2=collection efficiency factor \");\n",
"print'%s %.2f %s'%(\"\\n value of F= \",F,\"\");\n",
"print'%s %.2f %s %.2f %s '%(\"\\n Heat removed factor FR=\",FR,\"\"and\" \\n Absorbed solar energy is \\n S=\",S,\" kcal/Hr m^2 .....(MKS) \");\n",
"##for unit in S.I. , 1 kcal/Hr m^2 = 1.16298 W/m^2\n",
"s= S*1.16298; ##in W/m^2\n",
"print'%s %.2f %s'%(\"\\n S=\",s,\" W/m^2.....(SI)\");\n",
"##the values of F,FR will be same in any unit,since they are factors(dimensionless)\n",
"##Useful Gain=Qu=A_alpha*FR*(S-((Ar*UL)/A_alpha)*(Tfi-T_alpha))\n",
"##In MKS unit\n",
"Qu=A_alpha*FR*(S-((1.51*UL)/A_alpha)*(Tfi-T_alpha))\n",
"print'%s %.2f %s'%(\"\\n useful gain in (MKS) Qu=\",Qu,\" kcal/hr\");\n",
"##IN SI unit\n",
"qu=A_alpha*FR*(s-((1.51*6.98)/A_alpha)*(Tfi-T_alpha))##UL=6.98 W/m^2 degree celcius\n",
"print'%s %.2f %s'%(\"\\n useful gain in (SI) Qu=\",qu,\" Watt\");\n",
"##the exit fluid temperature can be obtained from\n",
"tci=150;##degree celcius\n",
"tco=tci+(Qu/(m*Cp));##from Qu=mCp(tco-tc); where, tco=collector fluid temp. at outlet,tci=Fluid inlet temp.\n",
"n=(Qu/(16*HbRb))*100;##ncollector=Qu/(A_alpha*HbRb)*100;\n",
"print'%s %.2f %s %.2f %s'%(\"\\n collector fluid temp. at outlet tco=\",tco,\" degree celcius\"and \" \\n ncollector = \",n,\" percent \");\n",
"\n",
"##The values/results/answers is approximate in the text book to the real calculated value\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Area of the receiver pipe Ar= 1.51 \n",
" A_aplha= 15.28 m^2=collection efficiency factor \n",
"\n",
" value of F= 0.87 \n",
"\n",
" Heat removed factor FR= 0.83 369.14 kcal/Hr m^2 .....(MKS) \n",
"\n",
" S= 429.30 W/m^2.....(SI)\n",
"\n",
" useful gain in (MKS) Qu= 3753.64 kcal/hr\n",
"\n",
" useful gain in (SI) Qu= 4365.07 Watt\n",
"\n",
" collector fluid temp. at outlet tco= 181.28 \n",
" ncollector = 39.10 percent \n"
]
}
],
"prompt_number": 2
}
],
"metadata": {}
}
]
}
|