summaryrefslogtreecommitdiff
path: root/Non-conventional_Energy_Sources_by_G._D._Rai/Chapter10.ipynb
blob: edc9f942e345efcf6a6de7720f829e7ae8986aa4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
{
 "metadata": {
  "name": "",
  "signature": "sha256:7dac7ff4d7c0b0efd562d141ece5753006bca27ad006e31a868bd655b584d707"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter10-Chemical Energy Sources"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.2.8.1-pg585"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "##Ex10.2.8.1;Find Reversible voltage for hydrogen oxygen fuel cell\n",
      "del_G=-237.3*10**3;##Joules/gm-mole of H2\n",
      "##Reversible voltafe E of a cell is given by =del_Wrev/nF=-del_G/nF\n",
      "##since 2 electrons are transferred per molecule of H2.thus\n",
      "n=2.;\n",
      "F=96500.;##Faraday's constant\n",
      "E=-del_G/(n*F);\n",
      "print'%s %.2f %s'%(\"Reversible voltage=\",E,\" volts\");\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Reversible voltage= 1.23  volts\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.2.8.2-pg585"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "##Ex10.2.8.2;calculate voltage output of cell,efficiency,electric work output,heat transfer to the surroundings\n",
      "import math\n",
      "##1] voltage output of cell\n",
      "del_G=-237.3*10**3;##Joules/gm-mole of H2\n",
      "n=2.;\n",
      "F=96500.;##Faraday's constant\n",
      "E=-del_G/(n*F);\n",
      "print'%s %.2f %s'%(\" E=\",E,\" volts\");\n",
      "##2] Efficiency\n",
      "##nmax=del_Wmax/-(del_H)25 degree celcuis = -(del_G)T/(-del_H)25\n",
      "del_G_at298k=-56690.;##unit=kcal/kg mole\n",
      "del_H_at298k=-68317.;##unit=kcal/kg mole\n",
      "nmax=del_G_at298k/del_H_at298k\n",
      "print'%s %.2f %s'%(\"\\n nmax=\",nmax,\"\")\n",
      "##3]Electric work output per mole\n",
      "F=(96500/4.184);\n",
      "del_Wrever=(n*F*E);\n",
      "print'%s %.2f %s'%(\"\\n Electric work output per mole=\",del_Wrever,\" kcal/kg mole\");\n",
      "##4] Heat transfer to the surroundings\n",
      "##the heat transfer is Q=T*del-s=del_H_at298k-del_G_at298k\n",
      "Q=del_H_at298k-del_G_at298k;\n",
      "print'%s %.2f %s'%(\"\\n The heat transfer is Q=\",Q,\" kcal/kg mole\");\n",
      "##The negative sign indicates that the heat is removed from the cell and transferred to the surrounding\n",
      "\n",
      "##value of \"Electric work output per mole\" is approximate in the text book to the real calculated value"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " E= 1.23  volts\n",
        "\n",
        " nmax= 0.83 \n",
        "\n",
        " Electric work output per mole= 56716.06  kcal/kg mole\n",
        "\n",
        " The heat transfer is Q= -11627.00  kcal/kg mole\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.2.8.3-pg587"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "##Ex10.2.8.3;The heat transferred to the surrounding\n",
      "import math\n",
      "del_G_at298k=-237191.;##unit=kJ/kg mole\n",
      "del_H_at298k=-285838.;##unit=kJ/kg mole\n",
      "ne=2.;\n",
      "F=96500.;##Faraday's constant\n",
      "E=-del_G_at298k/(ne*F);\n",
      "print'%s %.2f %s'%(\" E=\",E,\" volts\");\n",
      "nmax=del_G_at298k/del_H_at298k\n",
      "print'%s %.2f %s'%(\"\\n nmax=\",nmax,\"\");\n",
      "nmax=nmax*100;\n",
      "print'%s %.2f %s'%(\"=0\",nmax,\" persent\");\n",
      "##Electric work output per mole of the fule is We=-del_G kJ/kg mole\n",
      "We=del_G_at298k##kJ/kg mole\n",
      "print'%s %.2f %s'%(\"\\n Electric work output per mole of the fule is We=\",We,\" kJ/kg mole\")\n",
      "##since there is 1 mol os H2O for each mole of fule,there is also a work output of 237191 kJ/kg mole\n",
      "##Heat transferred is Q=T*del-s=del_H_at298k-del_G_at298k\n",
      "Q=del_H_at298k-del_G_at298k;\n",
      "print'%s %.2f %s'%(\"\\n The heat transfer is Q=\",Q,\" kJ/kg mole\");\n",
      "##The negative sign indicates that the heat is removed from the cell and transferred to the surrounding\n",
      "\n",
      "##value of \"Electric work output per mole\" is misprinted in the text book.\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " E= 1.23  volts\n",
        "\n",
        " nmax= 0.83 \n",
        "=0 82.98  persent\n",
        "\n",
        " Electric work output per mole of the fule is We= -237191.00  kJ/kg mole\n",
        "\n",
        " The heat transfer is Q= -48647.00  kJ/kg mole\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.2.8.4-pg587"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "##Ex10.2.8.4;calculate del_G,del_S,del_H;\n",
      "import math\n",
      "##We have the relation del_G=-n*F*E\n",
      "##where,del_G=gibbs free energy of the system at 1 atm and temperature(T)\n",
      "n=1.;##numbers of electons transferred per molecule of reactant\n",
      "E=0.0455;##volts ;e.m.f. of the cell\n",
      "F=96500.;##Faraday's constant\n",
      "##let X=dE/dT\n",
      "X=0.000338;\n",
      "del_G=-n*F*E;\n",
      "print'%s %.2f %s'%(\" del_G=\",del_G,\" joules\");\n",
      "##del_S = Entropy change of the system at temperature T and press p=1 atm in the case\n",
      "del_S=n*F*(X);##del_S=n*F*(dE/dT)\n",
      "print'%s %.2f %s'%(\"\\n del_S=\",del_S,\" joules/deg.\");\n",
      "##And entropy change is given by the relation del_H=nF[T(dE/dT)-E]\n",
      "T=298;\n",
      "del_H=n*F*((T*X)-E);\n",
      "print'%s %.2f %s'%(\"\\n del_H=\",del_H,\" joule\");\n",
      "\n",
      "\n",
      "##value are taken approximate in the text book to the real calculated value\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " del_G= -4390.75  joules\n",
        "\n",
        " del_S= 32.62  joules/deg.\n",
        "\n",
        " del_H= 5329.12  joule\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.2.8.5-pg588"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "##Ex10.2.8.5;heat transfer rate would be involved under these circumstances\n",
      "import math\n",
      "del_G_at25degree_celcius=-195500.;##unit=cal/gm mole\n",
      "del_H_at25degree_celcius=-212800.;##unit=cal/gm mole\n",
      "F=(96500/4.184);##since F=96500 coulombs/gm-mole\n",
      "n=8.\n",
      "E_at25degree_celcius=-del_G_at25degree_celcius/(n*F);##Joules/coulomb\n",
      "print'%s %.2f %s'%(\" E_at25degree_celcius=\",E_at25degree_celcius,\" volts=1.060 volts\");\n",
      "##Max. efficiency  nmax=del_Wmax/-(del_H)at25 degree celcuis = -(del_G)T/(-del_H)25\n",
      "nmax=del_G_at25degree_celcius/del_H_at25degree_celcius;\n",
      "print'%s %.2f %s'%(\"\\n nmax=\",nmax,\"\");\n",
      "##voltage efficiency nv=on load voltage/open circuit voltage=Operating voltage/Theoretical voltage\n",
      "Theoretical_voltage=1.060/0.92;\n",
      "print'%s %.2f %s'%(\"\\n Theoretical_voltage=\",Theoretical_voltage,\" volts\");\n",
      "##power developed=100 kW=100*10^3 W\n",
      "power_developed=(100*10**3)*0.86;##unit=kcal/hr; since 1 watt=1 joule/sec=0.86 kcal/hr\n",
      "print'%s %.2f %s'%(\"\\n power_developed=\",power_developed,\" kcal/hr\");\n",
      "del_G=-195500.;\n",
      "##Required flow rate of Methane\n",
      "R_F_R_O_M=(power_developed*16.)/del_G;##kg/hr;\n",
      "##(methane moles)=16\n",
      "print'%s %.2f %s'%(\"\\n flow rate of Methane=\",R_F_R_O_M,\" kg/hr\");\n",
      "##Heat transfer Q=T8del_s=del_H+del_w=del_H-del_G\n",
      "Q=del_H_at25degree_celcius-del_G_at25degree_celcius;\n",
      "print'%s %.2f %s'%(\"\\n The heat transfer is Q=\",Q,\" kcal/kg mole\");\n",
      "\n",
      "##The value are approximate in the text book to the real calculated value\n",
      "##value of \"Required flow rate of methane\" is wrong in the text book.\n",
      "##value of \"Heat transfer\" is wrong in the text book.\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " E_at25degree_celcius= 1.06  volts=1.060 volts\n",
        "\n",
        " nmax= 0.92 \n",
        "\n",
        " Theoretical_voltage= 1.15  volts\n",
        "\n",
        " power_developed= 86000.00  kcal/hr\n",
        "\n",
        " flow rate of Methane= -7.04  kg/hr\n",
        "\n",
        " The heat transfer is Q= -17300.00  kcal/kg mole\n"
       ]
      }
     ],
     "prompt_number": 2
    }
   ],
   "metadata": {}
  }
 ]
}