1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
|
{
"metadata": {
"name": "",
"signature": "sha256:a935d76914a9e4ae6d3e19bff37ec8b5eb26eace520b4d5bf46176dc57b307c5"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 6: Quantum Mechanics II"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.4, Page 205"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import scipy\n",
"import math\n",
"from scipy.integrate import quad\n",
"\n",
"#Variable declaration\n",
"alpha = 1; # For simplicity assume alpha to be unity\n",
"\n",
"#Calculations&Results\n",
"p = lambda x: math.sqrt(alpha)*math.exp(-2*alpha*x) # Probability that the particle lies between 0 and 1/alpha\n",
"integ, err = scipy.integrate.quad(p,0,1/alpha)\n",
"print \"The probability that the particle lies between 0 and 1/alpha = %5.3f\"%integ\n",
"p = lambda x: math.sqrt(alpha)*math.exp(-2*alpha*x)\n",
"integ, err = scipy.integrate.quad(p,1/alpha,2/alpha) # Probability that the particle lies between 1/alpha and 2/alpha\n",
"print \"The probability that the particle lies between 1/alpha and 2/alpha = %5.3f\"%integ\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The probability that the particle lies between 0 and 1/alpha = 0.432\n",
"The probability that the particle lies between 1/alpha and 2/alpha = 0.059\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.9, Page 215"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"h = 6.62e-034; # Planck's constant, Js\n",
"h_bar = h/(2*math.pi); # Reduced Planck's constant, Js\n",
"c = 3.00e+008; # Speed of light, m/s\n",
"e = 1.602e-019; # Energy equivalent of 1 eV, J\n",
"m = 938.3e+006; # Energy equivalent of proton mass, eV\n",
"L = 1e-005; # Diameter of the nucleus, nm\n",
"\n",
"#Calculations\n",
"E1 = math.pi**2*(h_bar*c/(e*1e-009))**2/(2*L**2*m*1e+006); # Energy of the ground state of proton, MeV\n",
"E2 = 4*E1; # Energy of first excited state of proton, MeV\n",
"delta_E = E2 -E1; # Transition energy of the proton inside the nucleus, MeV\n",
"\n",
"#Result\n",
"print \"The transition energy of the proton inside the nucleus = %1d MeV\"%delta_E"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The transition energy of the proton inside the nucleus = 6 MeV\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.14, Page 229"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"h = 6.62e-034; # Planck's constant, Js\n",
"h_bar = h/(2*math.pi); # Reduced Planck's constant, Js\n",
"c = 3.00e+008; # Speed of light, m/s\n",
"e = 1.602e-019; # Energy equivalent of 1 eV, J\n",
"m = 0.511e+006; # Energy equivalent of electron rest mass, eV\n",
"V0 = 10; # Height of potential barrier, eV\n",
"E = 5; # Energy of the incident electrons, eV\n",
"L = 0.8e-009; # Width of the potential barrier, m\n",
"\n",
"#Calculations\n",
"k = math.sqrt(2*m*(V0 - E))*e/(h_bar*c); # Schrodinger's constant, per m\n",
"T = (1 + V0**2*math.sinh(k*L)**2/(4*E*(V0 - E)))**(-1); # Transmission electron probability\n",
"\n",
"#Result\n",
"print \"The fraction of electrons tunnelled through the barrier = %3.1e\"%T"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The fraction of electrons tunnelled through the barrier = 4.4e-08\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.15, Page 229"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"h = 6.62e-034; # Planck's constant, Js\n",
"h_bar = h/(2*math.pi); # Reduced Planck's constant, Js\n",
"c = 3.00e+008; # Speed of light, m/s\n",
"e = 1.602e-019; # Energy equivalent of 1 eV, J\n",
"m = 0.511e+006; # Energy equivalent of electron rest mass, eV\n",
"V0 = 10; # Height of potential barrier, eV\n",
"\n",
"#Calculations\n",
"Sum_M = 0;\n",
"i = 1;\n",
"for E in range(1,5): # Range of energies of the incident electrons, eV\n",
" M = 16*E/V0*(1-E/V0); # All the factors multiplying the exponential term\n",
" Sum_M = Sum_M + M; # Accumulator\n",
" i = i + 1;\n",
"\n",
"E = 5; # Given energy of the incident electrons, eV\n",
"M = int(Sum_M/i); # Average value of M\n",
"L = 0.8e-009; # Width of the potential barrier, m\n",
"k = math.sqrt(2*m*(V0 - E))*e/(h_bar*c); # Schrodinger's constant, per m\n",
"T = M*math.exp(-2*k*L); # Transmission electron probability\n",
"\n",
"#Result\n",
"print \"The fraction of electrons tunnelled through the barrier = %3.1e\"%T"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The fraction of electrons tunnelled through the barrier = 2.2e-08\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.16, Page 230"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"h = 6.62e-034; # Planck's constant, Js\n",
"h_bar = h/(2*math.pi); # Reduced Planck's constant, Js\n",
"c = 3.00e+008; # Speed of light, m/s\n",
"e = 1.602e-019; # Energy equivalent of 1 eV, J\n",
"m = 0.511e+006; # Energy equivalent of electron rest mass, eV\n",
"V0 = 10; # Height of potential barrier, eV\n",
"E = 5; # Given energy of the incident electrons, eV\n",
"\n",
"#Calculations\n",
"l = h_bar*c/(2*math.sqrt(2*m*(V0 - E))*1e-009*e); # Penetration distance into the barrier when the probability of the particle penetration drops to 1/e, nm\n",
"\n",
"#Result\n",
"print \"The penetration distance for a %d eV electron approaching a step barrier of %d eV = %5.3f nm\"%(E, V0, l)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The penetration distance for a 5 eV electron approaching a step barrier of 10 eV = 0.044 nm\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.17, Page 234"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"h = 6.62e-034; # Planck's constant, Js\n",
"h_bar = h/(2*math.pi); # Reduced Planck's constant, Js\n",
"c = 3.00e+008; # Speed of light, m/s\n",
"e = 1.602e-019; # Charge on an electron, C\n",
"k = 9e+009; # Coulomb constant, N-Sq.m./C^2\n",
"m = 3727; # Energy equivalent of alpha particle rest mass, MeV\n",
"E = 5; # Given energy of the incident electrons, eV\n",
"Z1 = 2; # Atomic number of an alpha particle\n",
"Z2 = 92; # Atomic number of the U-238 nucleus\n",
"r_N = 7e-015; # Nuclear radius, m\n",
"K = 4.2; # Kinetic energy of alpha particle, MeV\n",
"\n",
"#Calculations\n",
"V_C = Z1*Z2*e**2*k/(r_N*e*1e+006); # Coulomb Potential, MeV\n",
"r_prime = V_C*r_N/(K*1e-015); # Distance through which the alpha particle must tunnel, fm\n",
"kapa = math.sqrt(2*m*(V_C-E))*e/(h_bar*c*1e-006); # Schronginger's Constant, per m\n",
"L = r_prime - r_N/1e-015; # Barrier width, fm\n",
"T = 16*(K/V_C)*(1-K/V_C)*math.exp(-2*kapa*L*1e-015); # Tunnelling probability of alpha particle\n",
"V_C_new = V_C/2; # Potential equal to half the Coulomb potential, MeV\n",
"L = L/2; # Width equal to half the barrier width, fm\n",
"kapa = math.sqrt(2*m*(V_C_new-E))*e/(h_bar*c*1e-006); # Schronginger's Constant, per m\n",
"T_a = 16*(K/V_C_new)*(1-K/V_C_new)*math.exp(-2*kapa*L*1e-015); # Approximated tunnelling probability of alpha particle\n",
"v = math.sqrt(2*K/m)*c; # Speed of the alpha particle, m/s\n",
"t = r_N/v; # Time taken by alpha particle to cross the U-238 nucleus, s\n",
"\n",
"#Results\n",
"print \"The barrier height = %2d MeV\"%(math.ceil(V_C))\n",
"print \"The distance that alpha particle must tunnel = %2d fm\"%r_prime\n",
"print \"The tunnelling potential assuming square-top potential = %1.0e\"%T\n",
"print \"The approximated tunnelling potential = %3.1e\"%T_a\n",
"print \"The speed of the alpha particle = %3.1e m/s\"%v\n",
"print \"The time taken by alpha particle to cross the U-238 nucleus = %1.0e s\"%t\n",
"\n",
"# Some answers are given wrong in the textbook for this problem"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The barrier height = 38 MeV\n",
"The distance that alpha particle must tunnel = 63 fm\n",
"The tunnelling potential assuming square-top potential = 6e-123\n",
"The approximated tunnelling potential = 3.8e-40\n",
"The speed of the alpha particle = 1.4e+07 m/s\n",
"The time taken by alpha particle to cross the U-238 nucleus = 5e-22 s\n"
]
}
],
"prompt_number": 7
}
],
"metadata": {}
}
]
}
|