summaryrefslogtreecommitdiff
path: root/Modern_Physics_for_Scientists_and_Engineers/ch4.ipynb
blob: dd98ce361b169c62874fa428218a796388469963 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
{
 "metadata": {
  "name": "",
  "signature": "sha256:f42166d612e07dd5c211bc7a51c893df5fb381dff9d6c4c0494c5987d5a5f81d"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 4: Structure of the Atom"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.1, Page 129"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "m_e = 0.000549;    # Rest mass of an electron, u\n",
      "m_He = 4.002603;    # Rest mass of a helium, u\n",
      "\n",
      "#Calculations\n",
      "M_alpha = m_He - 2*m_e;    # Mass of alpha particle, u\n",
      "theta_max = 2*m_e/M_alpha;    # Maximum scttering angle for aplha particle, rad\n",
      "\n",
      "#Result\n",
      "print \"The maximum scattering angle for alpha particle = %5.3f degrees\"%(theta_max*180/math.pi)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The maximum scattering angle for alpha particle = 0.016 degrees\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.2, Page 137"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "rho = 19.3;    # Density of gold, g/cc\n",
      "N_A = 6.02e+023;    # Avogadro's number\n",
      "N_M = 1;    # Number of atoms per molecule\n",
      "M_g = 197;    # Gram atomic mass of gold, g/mol\n",
      "n = rho*N_A*N_M/(M_g*1e-006);    # Number density of gold atoms, atoms/metre-cube\n",
      "Z1 = 79;    # Atomic number of gold\n",
      "Z2 = 2;    # Atomic number of He nucleus\n",
      "t = 1e-006;    # Thickness of the gold foil, m\n",
      "e = 1.602e-019;    # Charge on an electron, C\n",
      "k = 9e+009;    # Coulomb constant, N-Sq.m/C^2\n",
      "theta = 90.;    # Angle of deflection of alpha particle, degrees\n",
      "K = 7.7;    # Kinetic energy of alpha particles, MeV\n",
      "\n",
      "#Calculations\n",
      "f = math.pi*n*t*(Z1*Z2*e**2*k/(2*1.6e-013*K))**2*(1./math.tan(theta*math.pi/180/2))**2; # The fraction of alpha particles deflected\n",
      "\n",
      "#Result\n",
      "print \"The fraction of alpha particles deflected = %1.0e\"%f"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The fraction of alpha particles deflected = 4e-05\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.3, Page 138"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "rho = 19.3;    # Density of gold, g/cc\n",
      "N_A = 6.02e+023;    # Avogadro's number\n",
      "N_M = 1;    # Number of atoms per molecule\n",
      "M_g = 197;    # Gram atomic mass of gold, g/mol\n",
      "Z1 = 79;    # Atomic number of gold\n",
      "Z2 = 2;    # Atomic number of He nucleus\n",
      "t = 2.1e-007;    # Thickness of the gold foil, m\n",
      "e = 1.602e-019;    # Charge on an electron, C\n",
      "k = 9e+009;    # Coulomb constant, N-Sq.m/C^2\n",
      "r = 1e-002;    # Distance of the alpha particles from the target, m\n",
      "theta = 45;    # Angle of deflection of alpha particle, degrees\n",
      "K = 7.7;    # Kinetic energy of alpha particles, MeV\n",
      "\n",
      "#Calculations\n",
      "n = rho*N_A*N_M/(M_g*1e-006);    # Number density of gold atoms, atoms/metre-cube\n",
      "f = n*t*(Z1*Z2*e**2*k)**2/((r*1.6e-013*K)**2*math.sin(theta*math.pi/180/2)**4*16); # The fraction of alpha particles deflected\n",
      "\n",
      "#Result\n",
      "print \"The fraction of alpha particles deflected at %d degrees = %3.1e per mm square\"%(theta, f/1e+006)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The fraction of alpha particles deflected at 45 degrees = 3.2e-07 per mm square\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.5, Page 139"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "Z1 = 2;    # Atomic number of He nucleus\n",
      "Z2 = 13;    # Atomic number of aluminium\n",
      "e = 1.602e-019;    # Charge on an electron, C\n",
      "k = 9e+009;    # Coulomb constant, N-Sq.m/C^2\n",
      "K = 7.7;    # Kinetic energy of alpha particles, MeV\n",
      "\n",
      "#Calculations\n",
      "r_min = Z1*Z2*e**2*k/(K*1.6e-013);    # Size of the aluminium nucleus, m\n",
      "\n",
      "#Result\n",
      "print \"The size of the aluminium nucleus = %3.1e m\"%r_min"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The size of the aluminium nucleus = 4.9e-15 m\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.6, Page 140"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "c = 3.00e+008;    # Speed of light, m/s\n",
      "r = 0.5e-010;    # Radius of the atom, m\n",
      "e = 1.6e-019;    # Charge on an electron, C\n",
      "m_e = 9.11e-031;    # Mass of the electron, kg\n",
      "k = 9e+009;    # Coulomb constant, N-Sq.m/C^2\n",
      "\n",
      "#Calculations\n",
      "v = e*k**(1./2)/(m_e*r)**(1./2);    # Speed of the electron, m/s\n",
      "\n",
      "#Result\n",
      "if v < 0.01*c:\n",
      "    print \"The nonrelativistic treatment for calculating speed of the electron = %3.1e m/s is justified\"%v\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The nonrelativistic treatment for calculating speed of the electron = 2.2e+06 m/s is justified\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.7, Page 146"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import numpy \n",
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "def check_region(lamda):\n",
      "    if lamda >= 400. and lamda < 700.:\n",
      "        return  \"visible\";\n",
      "    else:\n",
      "        return \"infrared\";\n",
      "    \n",
      "\n",
      "n_l = 3.;    # Lower electron orbit in Paschen series\n",
      "n_u = [4, numpy.inf];    # First and limiting upper orbits in Paschen series\n",
      "R_inf = 1.0974e+007;    # Rydberg constant, per metre\n",
      "\n",
      "#Calculations&Results\n",
      "lambda_max = 1./(R_inf*(1./n_l**2-1./n_u[0]**2)*1e-009);    # The longest wavelength in Paschen series, nm\n",
      "region = check_region(lambda_max);    # Check for the region\n",
      "print \"The maximum wavelength is %d nm and is in the %s region\"%(math.ceil(lambda_max), region)\n",
      "lambda_min = 1./(R_inf*(1./n_l**2-1./n_u[1]**2)*1e-009);    # The shortest wavelength in Paschen series, nm\n",
      "region = check_region(lambda_min);    # Check for the region\n",
      "print \"The minimum wavelength is %d nm and is also in the %s region\"%(lambda_min, region)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The maximum wavelength is 1875 nm and is in the infrared region\n",
        "The minimum wavelength is 820 nm and is also in the infrared region\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.8, Page 149"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "m_e = 0.0005486;    # Mass of an electron u\n",
      "m_p = 1.007276;    # Mass of a proton, u\n",
      "m_d = 2.013553;    # Mass of a deutron, u\n",
      "m_t = 3.015500;    # Mass of a triton, u\n",
      "R_inf = 1.0974e+007;    # Rydberg constant, per metre\n",
      "\n",
      "#Calculations\n",
      "R_H = 1./(1+m_e/m_p)*R_inf;    # Rydberg constant for hydrogen\n",
      "R_D = 1./(1+m_e/m_d)*R_inf;    # Rydberg constant for deuterium\n",
      "R_T = 1./(1+m_e/m_t)*R_inf;    # Rydberg constant for tritium\n",
      "lambda_H = 1./(R_H*(1./2**2-1./3**2)*1e-009);    # Wavelength of H_alpha line for hydrogen, nm\n",
      "lambda_D = 1./(R_D*(1./2**2-1./3**2)*1e-009);    # Wavelength of H_alpha line for deuterium, nm\n",
      "lambda_T = 1./(R_T*(1./2**2-1./3**2)*1e-009);    # Wavelength of H_alpha line for tritium, nm\n",
      "\n",
      "#Results\n",
      "print \"The wavelength of H_alpha line for hydrogen = %6.2f nm\"%lambda_H\n",
      "print \"The wavelength of H_alpha line for deutruim = %6.2f nm\"%lambda_D\n",
      "print \"The wavelength of H_alpha line for tritium = %6.2f nm\"%lambda_T"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The wavelength of H_alpha line for hydrogen = 656.45 nm\n",
        "The wavelength of H_alpha line for deutruim = 656.27 nm\n",
        "The wavelength of H_alpha line for tritium = 656.22 nm\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.9, Page 150"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import numpy\n",
      "\n",
      "#Variable declaration\n",
      "R = 1.0974e+007;    # Rydberg constant, per metre\n",
      "Z = 3;    # Atomic number of Li\n",
      "n_l = 1;    # Lower orbit of Li++ ion\n",
      "n_u = numpy.inf;    # Limiting orbit of Li++ ion\n",
      "\n",
      "#Calculations\n",
      "lamda = 1./(Z**2*R*(1/n_l**2-1/n_u**2)*1e-009);    # The shortest wavelength emitted by Li++ ion, nm\n",
      "\n",
      "#Result\n",
      "print \"The shortest wavelength emitted by Li++ ion = %4.1f nm\"%lamda"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The shortest wavelength emitted by Li++ ion = 10.1 nm\n"
       ]
      }
     ],
     "prompt_number": 9
    }
   ],
   "metadata": {}
  }
 ]
}