summaryrefslogtreecommitdiff
path: root/Modern_Physics_for_Scientists_and_Engineers/ch3.ipynb
blob: c0e5a7b69e1a1504492b09817596cf45f5e03091 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
{
 "metadata": {
  "name": "",
  "signature": "sha256:5b9d1e914dbb4b0e0e0650025bfed9ebb154ac3184f6c3eb08f9fb1b53400e59"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 3: The Experimental Basis of Quantum Physics"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.1, Page 87"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "E = 1.2e+004;    # Electric field, V/m\n",
      "B = 8.8e-004;    # Magnetic field, T\n",
      "l = 0.05;    # Length of the deflection plates, m\n",
      "v0 = E/B;    # Initial velocity of the electron, m/s\n",
      "theta = 30;    # Angular deflection of the electron, degrees\n",
      "\n",
      "#Calculations\n",
      "q_ratio_m = E*math.tan(theta*math.pi/180)/(B**2*l);    # Specific charge of the electron, C/kg\n",
      "\n",
      "#Results\n",
      "print \"The initial velocity of the electron = %3.1e m/s\"%v0\n",
      "print \"The specific charge of the electron = %3.1e C/kg\"%q_ratio_m"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The initial velocity of the electron = 1.4e+07 m/s\n",
        "The specific charge of the electron = 1.8e+11 C/kg\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.3, Page 94"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import numpy\n",
      "\n",
      "def check_visible(l):\n",
      "    if l >= 400 and l < 700:\n",
      "        return 1\n",
      "    else:\n",
      "        return 0\n",
      "    \n",
      "R_H = 1.0968e+007;    # Rydberg constanr, per metre\n",
      "f = numpy.zeros(7)\n",
      "# Lyman series\n",
      "print \"\\nFor Lyman series, the wavelengths are:\\n\"\n",
      "n = 1.;    # The lowest level of Lyman series\n",
      "for k in range(2,4):\n",
      "    l = 1./(R_H*(1./n**2-1./k**2))/1.e-009;\n",
      "    print \"k = %d, %5.1f nm\"%(k, l);\n",
      "    f[k-1] = check_visible(l); \n",
      "    if f[k-1] == 1:\n",
      "        print(\" (Visible) \\n\");\n",
      "    else:\n",
      "        print(\" (Ultraviolet)\\n\");\n",
      "    \n",
      "    \n",
      "if f[0]  == 1 or f[1]  == 1 or f[2] == 1:\n",
      "    print(\"Some wavelengths of Lyman series fall in the visible region.\\n\")\n",
      "else:\n",
      "    print(\"All the wavelengths of Lyman series fall in the UV-region.\\n\")\n",
      "    \n",
      "\n",
      "# Balmer series\n",
      "print(\"\\nFor Balmer series, the wavelengths are:\\n\")\n",
      "n = 2;    # The lowest level of Balmer series\n",
      "for k in range(3,8):\n",
      "    l = 1./(R_H*(1./n**2.-1./k**2))/1.e-009;\n",
      "    print \"k = %d, %5.1f nm\"%(k, l);\n",
      "    f[k-1] = check_visible(l);\n",
      "    if f[k-1] == 1:\n",
      "        print(\" (Visible) \\n\");\n",
      "    else:\n",
      "        print(\" (Ultraviolet)\\n\");\n",
      "    \n",
      "# Paschen series\n",
      "print(\"\\nFor Paschen series, the wavelengths are:\\n\")\n",
      "n = 3.;    # The lowest level of Lyman series\n",
      "for k in range(4,6):\n",
      "    l = 1./(R_H*(1./n**2-1./k**2))/1e-009;\n",
      "    print \"k = %d, %5.1f nm\"%( k, l);\n",
      "    f[k-1] = check_visible(l); \n",
      "    if f[k-1] == 1:\n",
      "        print(\" (Visible) \\n\");\n",
      "    else:\n",
      "        print(\" (Infrared)\\n\");\n",
      "    \n",
      "# For limiting member\n",
      "k = numpy.inf;\n",
      "l = 1/(R_H*(1/n**2-1/k**2))/1e-009;\n",
      "print \"k = %f, %5.1f nm\"%(numpy.inf, l);\n",
      "f[5] = check_visible(l);\n",
      "if f[5] == 1:\n",
      "    print(\" (Visible) \\n\");\n",
      "else:\n",
      "    print(\" (Infrared)\\n\");\n",
      "   \n",
      "if f[3]  == 1 or f[4]  == 1 or f[5] == 1:\n",
      "    print(\"Some wavelengths of Paschen series fall in the visible region.\")\n",
      "else:\n",
      "    print(\"All the wavelengths of Paschen series fall in the IR-region.\")\n",
      "    \n",
      "        "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "For Lyman series, the wavelengths are:\n",
        "\n",
        "k = 2, 121.6 nm\n",
        " (Ultraviolet)\n",
        "\n",
        "k = 3, 102.6 nm\n",
        " (Ultraviolet)\n",
        "\n",
        "All the wavelengths of Lyman series fall in the UV-region.\n",
        "\n",
        "\n",
        "For Balmer series, the wavelengths are:\n",
        "\n",
        "k = 3, 656.5 nm\n",
        " (Visible) \n",
        "\n",
        "k = 4, 486.3 nm\n",
        " (Visible) \n",
        "\n",
        "k = 5, 434.2 nm\n",
        " (Visible) \n",
        "\n",
        "k = 6, 410.3 nm\n",
        " (Visible) \n",
        "\n",
        "k = 7, 397.1 nm\n",
        " (Ultraviolet)\n",
        "\n",
        "\n",
        "For Paschen series, the wavelengths are:\n",
        "\n",
        "k = 4, 1875.6 nm\n",
        " (Infrared)\n",
        "\n",
        "k = 5, 1282.1 nm\n",
        " (Infrared)\n",
        "\n",
        "k = inf, 820.6 nm\n",
        " (Infrared)\n",
        "\n",
        "All the wavelengths of Paschen series fall in the IR-region.\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.4, Page 98"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "T = 1600 + 273;    # Temperature of the furnace, K\n",
      "b = 2.898e-003;    # Wein's constant, m-K\n",
      "\n",
      "#Calculation\n",
      "lamda_max = math.ceil(b/(T*1e-009));    # Maximum wavelength from Wein's Displacement Law, nm\n",
      "\n",
      "#Results\n",
      "print \"The maximum wavelength emitted from the heated furnace = %4d nm\"%lamda_max\n",
      "print \"This wavelength falls in the IR-region.\"\n",
      "\n",
      "#answers differ due to rounding errors"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The maximum wavelength emitted from the heated furnace = 1548 nm\n",
        "This wavelength falls in the IR-region.\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.5, Page 98"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "lambda_max = 500e-009;    # Maximum intensity wavelength emitted by the sun, m\n",
      "b = 2.898e-003;    # Wein's constant, m-K\n",
      "sigma = 5.67e-008;    # Stefan's constant, W/Sq.m-K^4\n",
      "r = 6.96e+008;    # Radius of the sun, m\n",
      "r_E = 6.37e+006;    # Radius of the earth, m\n",
      "R_E = 1.49e+011;    # Mean-earth sun distance, m\n",
      "\n",
      "#Calculations\n",
      "S = 4*math.pi*r**2;    # Surface area of the sun, Sq.m\n",
      "T_sun = b/lambda_max;    # The temperature of the sun's surface, K\n",
      "R_T = sigma*T_sun**4;    # Power per unit area radiated by the sun, W/Sq.m\n",
      "P_sun = R_T*S;    # The total power radiated from the sun's surface, W\n",
      "F = r_E**2/(4*R_E**2);    # Fraction of sun's radiation received by Earth\n",
      "P_Earth_received = P_sun*F;    # The radiation received by the Earth from the sun, W\n",
      "U_Earth = P_Earth_received*60*60*24;    # The radiation received by the Earth from the sun in one day, J\n",
      "R_Earth = P_Earth_received/(math.pi*r_E**2);    # Power received by the Earth per unit of exposed area, W/Sq.m\n",
      "\n",
      "#Results\n",
      "print \"The surface temperature of the sun = %4d K\"%math.ceil(T_sun)\n",
      "print \"The power per unit area emitted from the surface of the sun = %4.2e W/Sq.m\"%R_T\n",
      "print \"The energy received by the Earth each day from the radiation of sun = %4.2e J\"%U_Earth\n",
      "print \"The power received by the Earth per unit of exposed area = %4d W/Sq.m\"%math.ceil(R_Earth)\n",
      "\n",
      "#Answers differ due to rounding errors"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The surface temperature of the sun = 5796 K\n",
        "The power per unit area emitted from the surface of the sun = 6.40e+07 W/Sq.m\n",
        "The energy received by the Earth each day from the radiation of sun = 1.54e+22 J\n",
        "The power received by the Earth per unit of exposed area = 1397 W/Sq.m\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.10, Page 106"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "phi = 2.36;    # Work function of sodium, eV\n",
      "N_A = 6.02e+023;    # Avogadro's number\n",
      "e = 1.6e-019;    # Energy equivalent of 1 eV, J\n",
      "I = 1e-008;    # Intensity of incident radiation, W/Sq.m\n",
      "K = 1.00;    # Kinetic energy of the ejected photoelectron, eV\n",
      "rho = 0.97;    # Density of Na atoms, g/cc\n",
      "M = 23;    # Gram atomic mass of Na, g/mol\n",
      "\n",
      "#Calculations\n",
      "n = N_A*1e+006/M*rho;    # Number of Na atoms per unit volume, atoms/metre-cube\n",
      "# Assume a cubic structure, then 1/d^3 = n, solving for d\n",
      "d = (1./n)**(1./3);    # Thickness of one layer of sodium atoms, m\n",
      "N = n*d;    # Number of exposed atoms per Sq.m\n",
      "R = I/(N*e);    # Rate of energy received by each atom, eV/s\n",
      "t = (phi+K)/R;    # Time needed to absorb 3.36 eV energy\n",
      "\n",
      "#Result\n",
      "print \"The exposure time of light to produce the photoelectron of %4.2f kinetic energy = %4.1f years\"%(K, t/(60*60*24*365.25))"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The exposure time of light to produce the photoelectron of 1.00 kinetic energy = 14.7 years\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.11, Page 109"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "phi = 2.93;    # Work function of lithium, eV\n",
      "lamda = 400e-009;    # Wavelength of incident light, m\n",
      "e = 1.6e-019;    # Energy equivalent of 1 eV, J\n",
      "c = 2.998e+008;    # Speed of light in vacuum, m/s\n",
      "h = 6.626e-034;    # Planck's constant, Js\n",
      "\n",
      "#Calculations\n",
      "E = h*c/(lamda*e);    # Energy of incident light, eV\n",
      "V0 = E - phi;    # Stopping potential, V\n",
      "\n",
      "#Results\n",
      "print \"The energy of incident photons = %4.2f eV\"%E\n",
      "print \"The stopping potential = %4.2f V\"%V0"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The energy of incident photons = 3.10 eV\n",
        "The stopping potential = 0.17 V\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.12, Page 109"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "phi = 2.93;    # Work function of lithium, eV\n",
      "c = 2.998e+008;    # Speed of light in vacuum, m/s\n",
      "K = 3.00;    # Kinetic energy of photoelectron, eV\n",
      "E = phi + K;    # Total energy of the incident light, eV\n",
      "h = 6.626e-034;    # Planck's constant, Js\n",
      "e = 1.6e-019;    # Energy equivalent of 1 eV, J\n",
      "\n",
      "#Calculations\n",
      "f = E*e/h;    # Frequency of incident light, Hz\n",
      "lamda = c/f;    # Wavelength of the incident light, m\n",
      "\n",
      "#Results\n",
      "print \"The frequency of incident light = %4.2e Hz\"%f\n",
      "print \"The wavelength of the incident light = %4.2f nm\"%(lamda/1e-009)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The frequency of incident light = 1.43e+15 Hz\n",
        "The wavelength of the incident light = 209.37 nm\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.13, Page 110"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "lamda = 350;    # Wavelength of incident light, nm\n",
      "e = 1.6e-019;    # Energy equivalent of 1 eV, J\n",
      "E = 1.250e+003/lamda;    # Total energy of the incident light, eV\n",
      "I = 1e-008;    # Intensity of incident light, W/Sq.m\n",
      "\n",
      "#Calculations\n",
      "# As Intensity, I = N*E, solving for N\n",
      "N = I/(E*e);    # The number of photons in the light beam\n",
      "\n",
      "#Results\n",
      "print \"The number of photons in the light beam = %3.1e photons/Sq.m/s\"%N"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The number of photons in the light beam = 1.8e+10 photons/Sq.m/s\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.15, Page 113"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "e = 1.6e-019;    # Energy equivalent of 1 eV, J\n",
      "c = 2.998e+008;    # Speed of light in vacuum, m/s\n",
      "h = 6.626e-034;    # Planck's constant, Js\n",
      "V0 = 35e+003;    # Electron acceleration voltage, V\n",
      "\n",
      "#Calculations\n",
      "lambda_min = h*c/(e*V0);    # Duane-Hunt rule for wavelength, m\n",
      "\n",
      "#Result\n",
      "print \"The minimum wavelength of X-rays = %4.2e m\"%lambda_min"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The minimum wavelength of X-rays = 3.55e-11 m\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.16, Page 116"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "c = 2.998e+008;    # Speed of light in vacuum, m/s\n",
      "h = 6.626e-034;    # Planck's constant, Js\n",
      "m_e = 9.11e-031;    # Rest mass of an electron, kg\n",
      "lamda = 0.050;    # Wavelength of the X-ray, nm\n",
      "theta = 180;    # The angle at which the recoil electron Ke becomes the largest, degree\n",
      "\n",
      "#Calculations\n",
      "E_x_ray = 1.240e+003/lamda;    # Energy of the X-ray, eV\n",
      "lambda_prime = lamda + (1-math.cos(theta*math.pi/180))*h/(m_e*c*1e-009);    # The largest wavelength of the scattered photon, nm\n",
      "E_prime_x_ray = 1.240e+003/lambda_prime;    # Energy of the scattered photon, eV\n",
      "K = (E_x_ray - E_prime_x_ray)/1e+003;    # Kinetic energy of the most energetic recoil electron, keV\n",
      "if (E_prime_x_ray < E_x_ray):\n",
      "    print \"The X-ray is Compton-scattered by the electron.\"\n",
      "else:\n",
      "    print \"The X-ray is not Compton-scattered by the electron.\"\n",
      "\n",
      "#Results\n",
      "print \"The largest wavelength of the scattered photon = %5.3f nm\"%lambda_prime\n",
      "print \"The kinetic energy of the most energetic recoil electron = %3.1f keV\"%K\n",
      "print \"The angle at which the recoil electron energy is the largest = %d degrees\"%theta"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The X-ray is Compton-scattered by the electron.\n",
        "The largest wavelength of the scattered photon = 0.055 nm\n",
        "The kinetic energy of the most energetic recoil electron = 2.2 keV\n",
        "The angle at which the recoil electron energy is the largest = 180 degrees\n"
       ]
      }
     ],
     "prompt_number": 10
    }
   ],
   "metadata": {}
  }
 ]
}