summaryrefslogtreecommitdiff
path: root/Modern_Physics_for_Scientists_and_Engineers/ch15.ipynb
blob: 7ea7cb3b337494a79a7d6d39ec01eebf215de322 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
{
 "metadata": {
  "name": "",
  "signature": "sha256:c4aa0414ffd05acf8e49e96b92516d863d2c0354ef81a7502c4540359e267fb8"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 15: General Relativity"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 15.1, Page 562"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "g = 9.8;    # Acceleration due to gravity, m/sec^2\n",
      "H = 10000;    # Altitude of the aeroplane above the surface of earth, m\n",
      "c = 3.00e+008;    # Speed of light in free space, m/s\n",
      "T = 45*3600;    # Time taken by the airplane to from eastward to westward trip, s\n",
      "\n",
      "#Calculations\n",
      "delta_T_G = g*H*T/(c**2*1e-009);    # Time difference in the two clocks due to gravitational redshift, ns\n",
      "C = 4e+007;    # Circumference of the earth, m \n",
      "v = 300;        # Speed of the jet airplane, m/s\n",
      "T0 = C/v;    # Time of flight of jet airplane very near the surface of the earth, s\n",
      "bita = v/c;    # Boost parameter\n",
      "# As from special relativity time dilation relation, T = T0*sqrt(1-bita^2), solving for T0 - T = delta_T_R, we have\n",
      "delta_T_R = T0*(1-math.sqrt(1-bita**2))/1e-009;    # Time difference in the two clocks due to special relativity, ns\n",
      "\n",
      "#Result\n",
      "print \"The gravitational time dilation effect of %d ns is larger than the approximate %4.1f ns of that of special relativity.\"%(math.ceil(delta_T_G), delta_T_R)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The gravitational time dilation effect of 177 ns is larger than the approximate 66.7 ns of that of special relativity.\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 15.2, Page 567"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "c = 3.00e+008;    # Speed of light in free space, m/s\n",
      "G = 6.67e-011;    # Newton's gravitational constant, N-Sq.m/per kg square\n",
      "M_S = 2.0e+030;    # Mass of the sun, kg\n",
      "M_E = 6.0e+024;    # Mass of the earth, kg\n",
      "\n",
      "#Calculations\n",
      "r_S = 2*G*M_S/(c**2*1e+003);    # Schwarzschild radius for sun, km\n",
      "r_E = 2*G*M_E/(c**2*1e-003);    # Schwarzschild radius for earth, mm\n",
      "\n",
      "#Results\n",
      "print \"The Schwarzschild radius for sun = %d km\"%math.ceil(r_S)\n",
      "print \"The Schwarzschild radius for earth = %d mm\"%math.ceil(r_E)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Schwarzschild radius for sun = 3 km\n",
        "The Schwarzschild radius for earth = 9 mm\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 15.3, Page 568"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "import scipy\n",
      "from scipy.integrate import quad\n",
      "\n",
      "#Variable declaration\n",
      "c = 3.00e+008;    # Speed of light in free space, m/s\n",
      "G = 6.67e-011;    # Newton's gravitational constant, N-Sq.m/per kg square\n",
      "h = 6.62e-034;    # Planck's constant, Js\n",
      "\n",
      "#Calculations\n",
      "h_bar = h/(2*math.pi);    # Reduced Planck's constant, Js\n",
      "sigma = 5.67e-008;    # Stefan-Boltzmann constant, W per Sq.m per K^4\n",
      "k = 1.38e-023;    # Boltzmann constant, J/K\n",
      "M0 = 1.99e+030;    # Mass of the sun, kg\n",
      "alpha = 2*sigma*h_bar**4*c**6/((8*math.pi)**3*k**4*G**2);    # A constant, kg^3/s\n",
      "T = lambda M: 1/alpha*M**2\n",
      "t,err = scipy.integrate.quad(T,0, 3*M0)\n",
      "\n",
      "#Result\n",
      "print \"The time required for the 3-solar-mass black hole to evaporate = %3.1e y\"%(t/(365.25*24*60*60))"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The time required for the 3-solar-mass black hole to evaporate = 5.7e+68 y\n"
       ]
      }
     ],
     "prompt_number": 3
    }
   ],
   "metadata": {}
  }
 ]
}