1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
|
{
"metadata": {
"name": "",
"signature": "sha256:ced2862e28b6da072a8a3e26efc3e44712d4ce0118ffb609847f53a2c9c6d14f"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 14: Particle Physics"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.1, Page 522"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"e = 1.6e-019; # Energy equivalent of 1 eV, J\n",
"h = 6.62e-034; # Planck's constant, Js\n",
"c = 3.00e+008; # Speed of light in vacuum, m/s\n",
"h_bar = h/(2*math.pi); # Reduced Planck's constant, Js\n",
"R_N = 1e-015; # Range of nuclear force, m\n",
"\n",
"#Calculations\n",
"# As delta_E*delta_t = h_bar/2 and delta_E = m_pion*c^2, solving for m_pion\n",
"m_pion = h_bar*c/(2*R_N*e*1e+006); # Mass of the meson, MeV/c^2\n",
"\n",
"#Result\n",
"print \"The estimated mass of meson from Heisenberg uncertainty principle = %.2f MeV/c^2\"%(m_pion)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The estimated mass of meson from Heisenberg uncertainty principle = 98.78 MeV/c^2\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.2, Page 526"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"e = 1.6e-019; # Energy equivalent of 1 eV, J\n",
"h = 6.62e-034; # Planck's constant, Js\n",
"c = 3.00e+008; # For simplicity assume speed of light to be unity\n",
"h_bar = h/(2*math.pi); # Reduced Planck's constant, Js\n",
"m_W = 80.4; # Energy equivalent of mass of W- particle, MeV\n",
"\n",
"#Calculations\n",
"R_W = h_bar*c/(2*m_W*e*1e+009); # Range of W- particle, m\n",
"delta_t = h_bar/(2*m_W*e*1e+009); # Time during which the energy conservation is violated, s\n",
"\n",
"#Results\n",
"print \"The range of W- particle = %3.1e m\"%R_W\n",
"print \"The time during which the energy conservation is violated = %1.0e s\"%delta_t"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The range of W- particle = 1.2e-18 m\n",
"The time during which the energy conservation is violated = 4e-27 s\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.10, Page 548"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"m_p = 0.938; # Rest mass energy of the proton, GeV\n",
"K = 6.4; # Kinetic energy of the proton projectile, GeV\n",
"\n",
"#Calculations\n",
"E_cm = math.sqrt(2*m_p**2+2*m_p*K); # Centre of mass energy of proton collsion with the fixed proton target, GeV\n",
"Q = 2*m_p - 4*m_p; # Q value of the reaction, GeV\n",
"K_th = -3*Q; # Threshold kinetic energy required to produce the antiprotons, GeV\n",
"K = 1000; # Kinetic energy of the protons in Tevatron, GeV\n",
"E_cm_T = math.sqrt(2*m_p**2+2*m_p*K); # Centre-of-mass energy available for the reaction for the Tevatron, GeV\n",
"\n",
"#Results\n",
"print \"The available energy in the center on mass = %4.2f GeV\"%E_cm\n",
"print \"The threshold kinetic energy required to produce the antiprotons = %3.1f GeV\"%K_th\n",
"print \"The centre-of-mass energy available for the reaction for the Tevatron = %d GeV\"%E_cm_T"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The available energy in the center on mass = 3.71 GeV\n",
"The threshold kinetic energy required to produce the antiprotons = 5.6 GeV\n",
"The centre-of-mass energy available for the reaction for the Tevatron = 43 GeV\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.11, Page 550"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"m_p = 0.938; # Rest mass energy of the proton, GeV\n",
"E_cm = 14000; # Centre of mass energy of colliding proton beams at LHC, GeV\n",
"\n",
"#Calculations\n",
"# As E_cm = math.sqrt(2*m_p**2+2*m_p*K), solving for K\n",
"K = E_cm**2*1e+009/(2*m_p); # Approx. kinetic energy of the protons needed for fixed-target experiment, eV \n",
"\n",
"#Result\n",
"print \"The kinetic energy of the protons needed for fixed-target experiment = %3.1e eV\"%K"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The kinetic energy of the protons needed for fixed-target experiment = 1.0e+17 eV\n"
]
}
],
"prompt_number": 4
}
],
"metadata": {}
}
]
}
|