summaryrefslogtreecommitdiff
path: root/Modern_Physics_for_Scientists_and_Engineers/ch13.ipynb
blob: 07e5a520e069019618288256f1ed762e9d2257f3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
{
 "metadata": {
  "name": "",
  "signature": "sha256:ca0579d99dcaeb6306ba4006be3368ec17d38cc09b7c654030323e81a030169b"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 13: Nuclear Interactiions and Applications"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13.1, Page 479"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "N_A = 6.02e+023;    # Avogadro's number\n",
      "e = 1.6e-019;    # Charge on an electron, C\n",
      "q = 2*e;    # Charge on the alpha particle, C\n",
      "rho = 1.9;    # Density of carbon target, atoms/cc\n",
      "N_M = 1;    # Number of atoms per molecule\n",
      "M_g = 12;    # Gram atomic mass of C12 isotope, g/mol\n",
      "sigma = 25e-031;    # Total cross section for the reaction, Sq.m\n",
      "t = 1e-006;    # Thickness of carbon target, m\n",
      "I_beam = 1e-006;    # Beam current of akpha particle, ampere\n",
      "time = 3600;    # Time for which the alpha particle beam is incident on the target, s\n",
      "\n",
      "#Calculations\n",
      "n = rho*N_A*N_M/M_g;    # Number of nuclei per unit volume, per cc\n",
      "P = n*t*sigma*1e+006;     # Probability of scattering of alpha particles\n",
      "N_I = I_beam*time/q;    # Number of incident alpha particles\n",
      "N_n = N_I*P;    # Number of neutrons produced in the reaction\n",
      "\n",
      "#Result\n",
      "print \"The number of neutrons produced in the reaction = %3.1e neutrons\"%N_n\n",
      "#answer differs due to rounding errors"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The number of neutrons produced in the reaction = 2.7e+09 neutrons\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13.2, Page 480"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "sigma_n = 3;    # Differential cross setion of production of the neutron, mb/sr\n",
      "sigma_p = 0.2;    # Differential cross setion of production of the proton, mb/sr\n",
      "\n",
      "#Calculations\n",
      "# As P_n = sigma_n and P_p = sigma_p, so\n",
      "P_ratio = sigma_n/sigma_p;    # The likelihood of a neutron production than a proton\n",
      "\n",
      "#Result\n",
      "print \"The likelihood of the neutron production than the proton = %2d\"%P_ratio"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The likelihood of the neutron production than the proton = 15\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13.3, Page 481"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "u = 931.5;    # Energy equivalent of 1 amu, MeV\n",
      "M_He = 4.002603;    # Mass of He-4 nucleus, u\n",
      "M_N = 14.003074;    # Mass of N-14 nucleus, u\n",
      "M_H = 1.007825;    # Mass of hydrogen nucleus, u\n",
      "M_O = 16.999132;    # Mass of O-16 nucleus, u\n",
      "K_alpha = 7.7;    # The kinetic energy of alpha particle, MeV\n",
      "\n",
      "#Calculations\n",
      "Q = (M_He + M_N - M_H - M_O)*u;    # The ground state Q-value of the nuclear reaction, MeV\n",
      "# As Q = K_p + K_O - K_alpha, solving for K_p + K_O\n",
      "K = Q + K_alpha;    # The sum of kinetic energy of the products, MeV\n",
      "\n",
      "#Results\n",
      "print \"The ground state Q-value of the endoergic nuclear reaction = %5.3f MeV\"%Q\n",
      "print \"The sum of kinetic energy of the products = %3.1f MeV\"%K"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The ground state Q-value of the endoergic nuclear reaction = -1.192 MeV\n",
        "The sum of kinetic energy of the products = 6.5 MeV\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13.4, Page 485"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "u = 931.5;    # Energy equivalent of 1 amu, MeV\n",
      "K_lab = 14.6;    # Kinetic energy of incident aplha particle, MeV\n",
      "Mx = 4;    # Mass number of projectile nucleus\n",
      "MX = 12;    # Mass number of target nucleus\n",
      "M_He = 4.002603;    # Mass of He nucleus, u\n",
      "M_C = 12.0 # Mass of carbon nucleus, u\n",
      "M_O = 15.994915;    # Mass of oxygen nucleus, u\n",
      "\n",
      "#Calculations\n",
      "K_cm = MX/(Mx + MX)*K_lab;    # Kinetic energy available in the centre of mass, MeV\n",
      "E_O = (M_He + M_C - M_O)*u;    # The ground state excitation energy of O-16, MeV\n",
      "E_final_O = K_cm + E_O;    # The final excitation energy of O-16, MeV\n",
      "\n",
      "#Result\n",
      "print \"The final excitation energy of O-16 = %4.2f MeV\"%E_final_O"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The final excitation energy of O-16 = 7.16 MeV\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13.5, Page 487"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "u = 931.5;    # Energy equivalent of 1 amu, MeV\n",
      "M_U235 = 235.0439;    # Mass of U-235 nucleus, u\n",
      "m_n = 1.0087;    # Mass of a neutron, u\n",
      "M_Zr99 = 98.9165;    # Mass of Zr-99 nucleus, u\n",
      "M_Te134 = 133.9115;    # Mass of Te-134 nucleus, u\n",
      "\n",
      "#Calculations\n",
      "Q = (M_U235 + m_n - M_Zr99 - M_Te134 - 3*m_n)*u;    # Q-value of the reaction, MeV\n",
      "\n",
      "#Result\n",
      "print \"The ground state Q-value of the induced fission reaction = %3d MeV\"%math.ceil(Q)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The ground state Q-value of the induced fission reaction = 185 MeV\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13.6, Page 488"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "u = 931.5;    # Energy equivalent of 1 amu, MeV\n",
      "m_n = 1.0087;    # Mass of a neutron, u\n",
      "M_U235 = 235.0439;    # Mass of U-235 nucleus, u\n",
      "M_U236 = 236.0456;    # Mass of U-236 nucleus, u\n",
      "M_U238 = 238.0508;    # Mass of U-238 nucleus, u\n",
      "M_U239 = 239.0543;    # Mass of U-239 nucleus, u\n",
      "\n",
      "#Calculations\n",
      "E_U236 = (m_n + M_U235 - M_U236)*u;    # Excitation energy of U-236 nucleus, MeV\n",
      "E_U239 = (m_n + M_U238 - M_U239)*u;    # Excitation energy of U-239 nucleus, MeV\n",
      "\n",
      "#Results\n",
      "print \"The excitation energy of U-236 nucleus = %3.1f MeV\"%E_U236\n",
      "print \"The excitation energy of U-239 nucleus = %3.1f MeV\"%E_U239"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The excitation energy of U-236 nucleus = 6.5 MeV\n",
        "The excitation energy of U-239 nucleus = 4.8 MeV\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13.7, Page 490"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "t = 30e-003;    # Time during which the number of fissions is to be calculated, s\n",
      "E = 185;    # Energy produced for each fission, MeV\n",
      "delta_t = 5e-006;    # Average time during which a neutron is captured, s\n",
      "\n",
      "#Calculations\n",
      "fs = t/delta_t;    # Number of fission cycles within 30 ms\n",
      "N = (1.01)**fs;    # Number of fissions that occur in 30 ms\n",
      "E_total = N*E;    # Total energy produced in 30 ms, MeV\n",
      "\n",
      "#Results\n",
      "print \"The total number of fissions that occur in %d ms = %3.1e\"%(t/1e-003, N)\n",
      "print \"The total energy produced = %3.1e MeV\"%E_total\n",
      "\n",
      "#Incorrect solution in textbook"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The total number of fissions that occur in 30 ms = 8.5e+25\n",
        "The total energy produced = 1.6e+28 MeV\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13.8, Page 500"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "u = 931.5;    # Energy equivalent of 1 amu, MeV\n",
      "M_He = 4.002603;    # Mass of He nucleus, u\n",
      "M_C = 12.0 # Mass of carbon nucleus, u\n",
      "M_O = 15.994915;    # Mass of oxygen nucleus, u\n",
      "\n",
      "#Calculations\n",
      "Q = (M_He + M_C - M_O)*u;    # Q-value of the reaction, MeV\n",
      "\n",
      "#Result\n",
      "print \"The energy expended in the fusion reaction inside supergiant star = %3.1f MeV\"%Q"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The energy expended in the fusion reaction inside supergiant star = 7.2 MeV\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13.9, Page 502"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "k = 1.38e-023;    # Boltzmann constant, J/K\n",
      "r = 3e-015;    # Distance at which the nuclear force becomes effective, m\n",
      "e = 1.6e-019;  # Charge on an electron, C\n",
      "K = 9e+009;    # Coulomb's constant, N-Sq.m/C^2\n",
      "\n",
      "#Calculations\n",
      "V = K*e**2/r;    # Coulomb potential energy, J\n",
      "# As V = 3/2*k*T, solving for T\n",
      "T = 2./3*V/k;    # The ignition temperature needed for the fusion reaction between deuterium and a tritium, K\n",
      "\n",
      "#Result\n",
      "print \"The ignition temperature needed for the fusion reaction between a deuterium and a tritium = %3.1e K\"%T"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The ignition temperature needed for the fusion reaction between a deuterium and a tritium = 3.7e+09 K\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13.10, Page 509"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "k = 1.38e-023;    # Boltzmann constant, J/K\n",
      "e = 1.6e-019;  # Energy equivalent of 1 eV, J\n",
      "h = 6.62e-034;    # Planck's oconstant, Js\n",
      "m = 1.67e-027;    # Mass of the neutron, kg\n",
      "lamda = 0.060e-009;    # Wavelength of the neutron beam, m\n",
      "\n",
      "#Calculations\n",
      "p = h/lamda;    # Momentum of the neutron from de-Broglie relation, kg-m/s\n",
      "K = p**2/(2*m*e);    # Kinetic energy of the neutron needed to study atomic structure, eV\n",
      "# As K = 3/2*k*T, solving for T\n",
      "T = 2./3*K*e/k;    # The temperature of the neutron needed to study atomic structure, K\n",
      "\n",
      "#Result\n",
      "print \"The energy and temperature of the neutron needed to study the atomic structure of solids = %4.2f eV and %4d K respectively\"%(K, T)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The energy and temperature of the neutron needed to study the atomic structure of solids = 0.23 eV and 1760 K respectively\n"
       ]
      }
     ],
     "prompt_number": 10
    }
   ],
   "metadata": {}
  }
 ]
}