1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
|
{
"metadata": {
"name": "",
"signature": "sha256:6270762d6231ec0577735987cb74ce2b57535e026b96bfac7596018acfb359e4"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 12: The Atomic Nuleus"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 12.1, Page 432"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"h = 6.62e-034; # Planck's constant, Js\n",
"h_bar = h/(2*math.pi); # Reduced Planck's constant, Js\n",
"m = 1.67e-027; # Rest mass of proton, kg\n",
"e = 1.602e-019; # Energy equivalent of 1 eV, J\n",
"c = 3.00e+008; # Speed of light, m/s\n",
"delta_x = 8.0e-015; # Size of the nucleus, m\n",
"\n",
"#Calculations\n",
"delta_p = h_bar/(2*delta_x*e); # Uncertainty in momentum of proton from Heisenberg Uncertainty Principle, eV-s/m\n",
"p_min = delta_p; # Minimum momentum of the proton inside the nucleus, eV-s/m\n",
"K = (p_min*c)**2*e/(2*m*c**2*1e+006); # The minimum kinetic energy of the proton in a medium sized nucleus, MeV\n",
"\n",
"#Result\n",
"print \"The minimum kinetic energy of the proton in a medium sized nucleus = %4.2f MeV\"%K"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The minimum kinetic energy of the proton in a medium sized nucleus = 0.08 MeV\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 12.2, Page 436"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"c = 3.00e+008; # Speed of light, m/s\n",
"e = 1.602e-019; # Energy equivalent of 1 eV, J\n",
"m_e = 0.511; # Rest mass energy of electron, MeV\n",
"m_p = 938.3; # Rest mass energy of proton, MeV\n",
"h = 6.62e-034; # Planck's constant, Js\n",
"A = 40; # Mass number of Ca-40\n",
"r0 = 1.2; # Nuclear radius constant, fm\n",
"\n",
"#Calculations&Results\n",
"R = r0*A**(1./3); # Radius of Ca-40 nucleus, fm\n",
"print \"The radius of Ca-40 nucleus = %3.1f fm\"%R\n",
"lamda = 2.0; # de-Broglie wavelength to distinguish a distance at least half the radius, fm\n",
"# Electron energy\n",
"E = math.ceil(math.sqrt(m_e**2+(h*c/(lamda*e*1e+006*1e-015))**2)); # Total energy of the probing electron, MeV\n",
"K = E - m_e; # Kinetic energy of probing electron, MeV\n",
"print \"The kinetic energy of probing electron = %3d MeV\"%math.ceil(K)\n",
"# Proton energy\n",
"E = math.ceil(math.sqrt(m_p**2+(h*c/(lamda*e*1e+006*1e-015))**2)); # Total energy of the probing electron, MeV\n",
"K = E - m_p; # Kinetic energy of probing electron, MeV\n",
"print \"The kinetic energy of probing proton = %3d MeV\"%math.ceil(K)\n",
"\n",
"#answers differ due to rounding errors"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The radius of Ca-40 nucleus = 4.1 fm\n",
"The kinetic energy of probing electron = 620 MeV\n",
"The kinetic energy of probing proton = 187 MeV\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 12.3, Page 437"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"A_U238 = 238; # Mass number of U-238\n",
"A_He4 = 4; # Mass number of He-4\n",
"r0 = 1.2; # Nuclear radius constant, nm\n",
"\n",
"#Calculations&Results\n",
"R_U238 = r0*A_U238**(1./3); # Radius of U-238 nucleus, fm\n",
"R_He4 = r0*A_He4**(1./3); # Radius of He-4 nucleus, fm\n",
"print \"The radii of U-238 and He-4 nuclei are %3.1f fm and %3.1f fm repectively\"%(R_U238, R_He4)\n",
"ratio = R_U238/R_He4; # Ratio of the two radii\n",
"print \"The ratio of radius to U-238 to that of He-4 = %3.1f\"%ratio"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The radii of U-238 and He-4 nuclei are 7.4 fm and 1.9 fm repectively\n",
"The ratio of radius to U-238 to that of He-4 = 3.9\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 12.4, Page 438"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"h = 6.62e-034; # Planck's constant, Js\n",
"c = 3.00e+008; # Speed of light, m/s\n",
"e = 1.602e-019; # Energy equivalent of 1 eV, J\n",
"B = 2.0; # Applied magnetic field, T\n",
"mu_N = 3.15e-008; # Nucleon magnetic moment, eV/T\n",
"\n",
"#Calculations\n",
"mu_p = 2.79*mu_N; # Proton magnetic moment, eV/T\n",
"delta_E = 2*mu_p*B; # Energy difference between the up and down proton states, eV\n",
"f = delta_E*e/h; # Frequency of electromagnetic radiation that flips the proton spins, Hz\n",
"lamda = c/f; # Wavelength of electromagnetic radiation that flips the proton spins, m\n",
"\n",
"#Results\n",
"print \"The energy difference between the up and down proton states = %3.1e eV\"%delta_E\n",
"print \"The frequency of electromagnetic radiation that flips the proton spins = %2d MHz\"%(f/1e+006)\n",
"print \"The wavelength of electromagnetic radiation that flips the proton spins = %3.1f m\"%lamda"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The energy difference between the up and down proton states = 3.5e-07 eV\n",
"The frequency of electromagnetic radiation that flips the proton spins = 85 MHz\n",
"The wavelength of electromagnetic radiation that flips the proton spins = 3.5 m\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 12.5, Page 443"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"c = 3.00e+008; # Speed of light, m/s\n",
"e = 1.602e-019; # Energy equivalent of 1 eV, J\n",
"u = 931.5; # Energy equivalent of 1 amu, MeV\n",
"m_n = 1.008665; # Mass of a neutron, u\n",
"M_H = 1.007825; # Mass of a proton, u\n",
"M_He = 4.002603; # Mass of helium nucleus\n",
"M_Be = 8.005305; # Mass of Be-8, u\n",
"\n",
"#Calculations&Results\n",
"B_Be = (4*m_n+4*M_H - M_Be)*u;\n",
"B_Be_2alpha = (2*M_He - M_Be)*u;\n",
"print \"The binding energy of Be-8 = %4.1f MeV and is positive\"%B_Be\n",
"if (B_Be_2alpha > 0):\n",
" print \"The Be-4 is stable w.r.t. decay into two alpha particles.\";\n",
"else:\n",
" print \"The Be-4 is unstable w.r.t. decay into two alpha particles since the decay has binding energy of %5.3f MeV\"%B_Be_2alpha \n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The binding energy of Be-8 = 56.5 MeV and is positive\n",
"The Be-4 is unstable w.r.t. decay into two alpha particles since the decay has binding energy of -0.092 MeV\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 12.6, Page 444"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"Z = 92; # Atomic number of U-238\n",
"A = 238; # Mass number of U-238\n",
"\n",
"#Calculations\n",
"E_Coul = 0.72*Z*(Z-1)*A**(-1./3); # Total Coulomb energy of U-238, MeV\n",
"\n",
"#Result\n",
"print \"The total Coulomb energy of U-238 = %3d MeV\"%E_Coul"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The total Coulomb energy of U-238 = 972 MeV\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 12.8, Page 447"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"u = 931.5; # Energy equivalent of 1 amu, MeV\n",
"m_p = 1.007825; # Mass of proton, amu\n",
"m_n = 1.008665; # Mass of neutron, amu\n",
"M_Ne = 19.992440; # Mass of Ne-20 nucleus, amu\n",
"M_Fe = 55.934942; # Mass of Fe-56 nucleus, amu\n",
"M_U = 238.050783; # Mass of U-238 nucleus, amu\n",
"A_Ne = 20; # Mass number of Ne-20 nucleus\n",
"A_Fe = 56; # Mass number of Fe-56 nucleus\n",
"A_U = 238; # Mass number of U-238 nucleus\n",
"\n",
"#Calculations\n",
"BE_Ne = (10*m_p+10*m_n-M_Ne)*u; # Binding energy of Ne-20 nucleus, MeV\n",
"BE_Fe = (26*m_p+30*m_n-M_Fe)*u; # Binding energy of Fe-56 nucleus, MeV\n",
"BE_U = (92*m_p+146*m_n-M_U)*u; # Binding energy of U-238 nucleus, MeV\n",
"\n",
"#Results\n",
"print \"The binding energy per nucleon for Ne-20 : %4.2f MeV/nucleon\"%(BE_Ne/A_Ne)\n",
"print \"The binding energy per nucleon for Fe-56 : %4.2f MeV/nucleon\"%(BE_Fe/A_Fe)\n",
"print \"The binding energy per nucleon for U-238 : %4.2f MeV/nucleon\"%(BE_U/A_U)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The binding energy per nucleon for Ne-20 : 8.03 MeV/nucleon\n",
"The binding energy per nucleon for Fe-56 : 8.79 MeV/nucleon\n",
"The binding energy per nucleon for U-238 : 7.57 MeV/nucleon\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 12.10, Page 451"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"N_A = 6.023e+023; # Avogadro's number\n",
"T = 138*24*3600; # Half life of Po-210, s\n",
"R = 2000; # Activity of Po-210, disintegrations/s\n",
"M = 0.210; # Gram molecular mass of Po-210, kg\n",
"\n",
"#Calculations\n",
"f = 1/3.7e+010; # Conversion factor to convert from decays/s to Ci\n",
"A = R*f/1e-006; # Activity of Po-210, micro-Ci\n",
"N = R*T/math.log(2); # Number of radioactive nuclei of Po-210, nuclei\n",
"m = N*M/N_A; # Mass of Po-210 sample, kg\n",
"\n",
"#Results\n",
"print \"The activity of Po-210 = %5.3f micro-Ci\"%A\n",
"print \"The mass of Po-210 sample = %3.1e kg\"%m"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The activity of Po-210 = 0.054 micro-Ci\n",
"The mass of Po-210 sample = 1.2e-14 kg\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 12.11, Page 452"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"T = 110; # Half life of F-18, min\n",
"f_remain = 0.01; # Fraction of the F-18 sample remained\n",
"\n",
"#Calculations\n",
"t = -math.log(0.01)/(math.log(2)*60)*T; # Time taken by the F-18 sample to decay to 1 percent of its initial value, h\n",
"\n",
"#Result\n",
"print \"The time taken for 99 percent of the F-18 sample to decay = %4.1f h\"%t"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The time taken for 99 percent of the F-18 sample to decay = 12.2 h\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 12.12, Page 452"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"N_A = 6.023e+023; # Avogadro's number\n",
"M = 10e+03; # Mass of the U-235, g\n",
"M_U235 = 235; # Molecular mass of U-235, g\n",
"t_half = 7.04e+008; # Half life of U-235, y\n",
"\n",
"#Calculations\n",
"N = M*N_A/M_U235; # Number of U-235 atoms in 10 kg sample\n",
"R = math.log(2)*N/t_half; # The alpha activity of 10 kg sample of U-235, decays/y\n",
"\n",
"#Result\n",
"print \"The alpha activity of 10 kg sample of U-235 = %3.1e Bq\"%(R/(365.25*24*60*60))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The alpha activity of 10 kg sample of U-235 = 8.0e+08 Bq\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 12.13, Page 453"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"u = 931.5; # Energy equivalent of 1 u, MeV\n",
"M_U230 = 230.033927; # Atomic mass of U-230, u\n",
"m_n = 1.008665; # Mass of a neutron, u\n",
"M_H = 1.007825; # Mass of hydrogen, u\n",
"M_U229 = 229.033496; # Gram atomic mass of U-230\n",
"\n",
"#Calculations&Results\n",
"Q = (M_U230 - M_U229 - m_n)*u; # Q-value of the reaction emitting a neutron\n",
"if (Q < 0):\n",
" print \"The neutron decay in this reaction is not possible.\"\n",
"else:\n",
" print \"The neutron decay in this reaction is possible.\"\n",
"\n",
"Q = (M_U230 - M_U229 - M_H)*u; # Q-value of the reaction emitting a proton\n",
"if (Q < 0):\n",
" print \"The proton decay in this reaction is not possible.\"\n",
"else:\n",
" print \"The proton decay in this reaction is possible.\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The neutron decay in this reaction is not possible.\n",
"The proton decay in this reaction is not possible.\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 12.15, Page 461"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"u = 931.5; # Energy equivalent of 1 u, MeV\n",
"M_Fe55 = 54.938298; # Atomic mass of Fe-55, u\n",
"M_Mn55 = 54.938050; # Atomic mass of Mn-55, u\n",
"m_e = 0.000549; # Mass of the electron, u\n",
"\n",
"#Calculations&Results\n",
"Q = (M_Fe55 - M_Mn55 - 2*m_e)*u; # Q-value of the reaction undergoing beta+ decay, MeV\n",
"if (Q < 0):\n",
" print \"The beta+ decay is not allowed for Fe-55\"\n",
"else:\n",
" print \"The beta+ decay is allowed for Fe-55\"\n",
"\n",
"Q = (M_Fe55 - M_Mn55)*u; # Q-value of the reaction undergoing electron capture, MeV\n",
"if (Q < 0):\n",
" print \"Fe-55 may not undergo electron capture\"\n",
"else:\n",
" print \"Fe-55 may undergo electron capture\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The beta+ decay is not allowed for Fe-55\n",
"Fe-55 may undergo electron capture\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 12.16, Page 462"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"def check_allowance(Q, decay_type):\n",
" if (Q < 0):\n",
"\tprint \"The %s is not allowed for Ac-226\"%decay_type\n",
" else:\n",
"\tprint \"The %s is allowed for Ac-226\"%decay_type\n",
"\n",
"\n",
"u = 931.5; # Energy equivalent of 1 u, MeV\n",
"M_Ac226 = 226.026090; # Atomic mass of Ac-226, u\n",
"M_Fr222 = 222.017544; # Atomic mass of Fr-222, u\n",
"M_He4 = 4.002603; # Atomic mass of He-4, u\n",
"M_Th226 = 226.024891; # Atomic mass of M_Th226, u\n",
"M_Ra226 = 226.025403; # Atomic mass of M_Ra226, u\n",
"m_e = 0.000549; # Mass of the electron, u\n",
"\n",
"#Calculations\n",
"# Alpha Decay\n",
"Q = (M_Ac226 - M_Fr222 - M_He4)*u; # Q-value of the reaction undergoing alpha decay, MeV\n",
"check_allowance(Q, \"alpha decay\");\n",
"# Beta- Decay\n",
"Q = (M_Ac226 - M_Th226)*u; # Q-value of the reaction undergoing beta- decay, MeV\n",
"check_allowance(Q, \"beta- decay\");\n",
"# Beta+ Decay\n",
"Q = (M_Ac226 - M_Ra226 - 2*m_e)*u; # Q-value of the reaction undergoing beta+ decay, MeV\n",
"check_allowance(Q, \"beta+ decay\");\n",
"# Electron Capture\n",
"Q = (M_Ac226 - M_Ra226)*u; # Q-value of the reaction undergoing electron capture, MeV\n",
"check_allowance(Q, \"electron capture\");\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The alpha decay is allowed for Ac-226\n",
"The beta- decay is allowed for Ac-226\n",
"The beta+ decay is not allowed for Ac-226\n",
"The electron capture is allowed for Ac-226\n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 12.17, Page 463"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"u = 931.5; # Energy equivalent of 1 u, MeV\n",
"E_ex = 0.072; # Energy of the excited state, MeV\n",
"\n",
"#Calculations\n",
"M = 226*u*1e+0; # Energy equivalent of atomic mass of Th-226, MeV\n",
"x = E_ex/(2*M); # The error introduced in the gamma ray energy by approximation\n",
"\n",
"#Result\n",
"print \"The error introduced in the gamma ray energy by approximation = %3.1e\"%x"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The error introduced in the gamma ray energy by approximation = 1.7e-07\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 12.18, Page 467"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"t_half = 4.47e+009; # The half life of uranium ore, years\n",
"R_prime = 0.60; # The ratio of Pb206 abundance to that of U238\n",
"\n",
"#Calculations\n",
"t = t_half/math.log(2)*math.log(R_prime + 1); # Age of the uranuim ore, years\n",
"\n",
"#Result\n",
"print \"The age of U-238 ore = %3.1e years\"%t"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The age of U-238 ore = 3.0e+09 years\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 12.19, Page 469"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"t_half = 5730; # The half life of uranium ore, years\n",
"R0 = 1.2e-012; # The initial ratio of C14 to C12 at the time of death\n",
"R = 1.10e-012; # The final ratio of C14 to C12 t years after death\n",
"\n",
"#Calculations\n",
"# As R = R0*math.exp(-lambda*t), solving for t\n",
"t = -math.log(R/R0)*t_half/math.log(2); # Age of the bone, years\n",
"\n",
"#Result\n",
"print \"The %3d years age of bone does not date from the Roman Empire.\"%math.ceil(t)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The 720 years age of bone does not date from the Roman Empire.\n"
]
}
],
"prompt_number": 18
}
],
"metadata": {}
}
]
}
|