summaryrefslogtreecommitdiff
path: root/Modern_Physics_for_Scientists_and_Engineers/ch11.ipynb
blob: 5100297e98ae9b8d03a6ce92b281d3cd348a0547 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
{
 "metadata": {
  "name": "",
  "signature": "sha256:dd227268a9d19f5e7b124ff2e3d8219b9fcc3bf4655f5f8e908de4958335cce5"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 11: Semiconductor Theory and Devices"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 11.1, Page 400"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import numpy\n",
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "e = 1.6e-019;    # Energy equivalent of 1 eV, J\n",
      "k = 1.38e-023;    # Boltzmann constant, J/K\n",
      "T = 293;    # Room temperature, K\n",
      "\n",
      "#Calculations&Results\n",
      "dE = [0.10, 1.0, 10.0];    # Energies above the valence band, eV\n",
      "F_FD = numpy.zeros(3);\n",
      "for i in range(0,3):\n",
      "    F_FD[i] = 1/(math.exp(dE[i]*e/(k*T)) + 1);\n",
      "    print \"For E - E_F = %4.2f eV, F_FD = %4.2e\"%(dE[i], F_FD[i])\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "For E - E_F = 0.10 eV, F_FD = 1.88e-02\n",
        "For E - E_F = 1.00 eV, F_FD = 6.53e-18\n",
        "For E - E_F = 10.00 eV, F_FD = 1.40e-172\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 11.3, Page 402"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "e = 1.6e-019;    # Energy equivalent of 1 eV, J\n",
      "rho = 5.92e-008;    # Resistivity of the zinc at room temperature, ohm-m\n",
      "B = 0.25;    # Magnetic field applied perpendicular to the strip, T\n",
      "x = 10.0e-002;    # Length of the zinc strip, m\n",
      "y = 2.0e-002;    # Width of the zinc strip, m\n",
      "V = 20e-003;    # Potential difference applied across the strip, V\n",
      "I = 0.400;    # Current through the strip, A\n",
      "V_H = 0.56e-006;    # Hall voltage that appeared across the strip, V\n",
      "\n",
      "#Calculations\n",
      "z = rho*x*I/(y*V);    # Thickness of the strip, m\n",
      "n = I*B/(e*V_H*z);    # Number density of the charge carriers, per metre cube\n",
      "\n",
      "#Results\n",
      "print \"The thickness of the zinc strip = %4.2e m\"%z\n",
      "print \"The number density of the charge carriers = %4.2e per metre cube\"%n\n",
      "print \"The charge carries in zinc are positive.\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The thickness of the zinc strip = 5.92e-06 m\n",
        "The number density of the charge carriers = 1.89e+29 per metre cube\n",
        "The charge carries in zinc are positive.\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 11.4, Page 408"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "e = 1.602e-019;    # Energy equivalent of 1 eV, J\n",
      "k = 1.38e-023;    # Boltzmann constant, J/K\n",
      "T = 293;    # Room temperature, K\n",
      "V_f = 0.200;    # Forward voltage, V\n",
      "I_f = 50e-003;    # Forward current, A\n",
      "V_r = -0.200;    # Reverse voltage, V\n",
      "\n",
      "#Calculations\n",
      "I_r = I_f*(math.exp(e*V_r/(k*T))-1)/(math.exp(e*V_f/(k*T)) - 1);    # Reverse current from diode equation, A\n",
      "\n",
      "#Result\n",
      "print \"The reverse current through pn-junction diode = %2d micro-ampere\"%(I_r/1e-006)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The reverse current through pn-junction diode = -18 micro-ampere\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 11.5, Page 413"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "A = 100*100;    # Area of solar cell, Sq.m\n",
      "t = 12*60*60;    # Time for which the solar cell operates, s\n",
      "phi = 680;    # Solar flux received by the solar cell, W/Sq.m\n",
      "eta = 0.30    # Efficiency of the solar array\n",
      "\n",
      "#Calculations&Results\n",
      "E_array = eta*phi*A*t;    # Energy produced by solar cell in one 12-hour day, J\n",
      "print \"The energy produced by solar cell in one 12-hour day : %3.1e J\"%E_array\n",
      "P = 100e+006;    # Power output of power plant, W\n",
      "t = 24*60*60;    # Time for which power plant operates, s\n",
      "E_plant = P*t;    # Energy produced by power plant, J\n",
      "print \"The energy produced by power plant in one day : %3.1e J which is about %d times more than that produced by solar cell array..!\"%(E_plant, math.ceil(E_plant/E_array))"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The energy produced by solar cell in one 12-hour day : 8.8e+10 J\n",
        "The energy produced by power plant in one day : 8.6e+12 J which is about 99 times more than that produced by solar cell array..!\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 11.6, Page 418"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "r1 = 2.30e-002;    # Radius of inner edge of storing region of CD-ROM, m\n",
      "r2 =5.80e-002;    # Radius of outer edge of storing region of CD-ROM, m\n",
      "A = math.pi*(r2**2 - r1**2);    # Area of the usable region of CD-ROM, Sq.m\n",
      "N = 700e+006*8;    # Total number of bits in CD-ROM\n",
      "\n",
      "#Calculations\n",
      "APB = A/N;    # Area per bit of CD-ROM, Sq.m/bit\n",
      "t = 1.6e-006;    # Track width of CD_ROM, m\n",
      "l = APB/t;    # Bit length, m\n",
      "\n",
      "#Results\n",
      "print \"The surface area of CD-ROM allowed for each data bit = %3.1e Sq.m/bit\"%APB\n",
      "print \"The approx. dimensions of each bit along the track = %1.0f micro-metre\"%(l/1e-006)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The surface area of CD-ROM allowed for each data bit = 1.6e-12 Sq.m/bit\n",
        "The approx. dimensions of each bit along the track = 1 micro-metre\n"
       ]
      }
     ],
     "prompt_number": 5
    }
   ],
   "metadata": {}
  }
 ]
}