summaryrefslogtreecommitdiff
path: root/Modern_Physics_for_Scientists_and_Engineers/ch10.ipynb
blob: 3a48029fc27def0774f4cfe6260e4049a48c0a89 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
{
 "metadata": {
  "name": "",
  "signature": "sha256:0de7fdc3a9080098412999030f35bc2fb5913b94ca2786fe525f30a16f00b7a8"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 10: Molecules, Lasers and Solids"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.1, Page 342"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "m = 2.33e-026;    # Mass of a nitrogen atom, kg\n",
      "R = 1.1e-010;    # Interatomic separation between two nitrogen atoms, m\n",
      "h = 6.626e-034;    # Planck's constant, Js\n",
      "e = 1.6e-019;    # Energy equivalent of 1 eV, J\n",
      "\n",
      "#Calculations\n",
      "h_bar = h/(2*math.pi);    # Reduced Planck's constant, Js\n",
      "I = m*R**2/2;    # Momemt of rotational inertia of nitrogen gas molecule, kg-Sq.m\n",
      "l = 1;    # Rotational angular momentum quantum number\n",
      "E_rot = h_bar**2*l*(l+1)/(2*I);    # The energy for lowest rotational state of the nitrogen molecule, J\n",
      "\n",
      "#Result\n",
      "print \"The energy for lowest rotational state of the nitrogen molecule = %4.2e eV\"%(E_rot/e)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The energy for lowest rotational state of the nitrogen molecule = 4.93e-04 eV\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.2, Page 343"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "h = 6.626e-034;    # Planck's constant, Js\n",
      "e = 1.6e-019;    # Energy equivalent of 1 eV, J\n",
      "h_bar = h/(2*math.pi);    # Reduced Planck's constant, Js\n",
      "k = 1.38e-023;    # Boltzmann constant, J/K\n",
      "u = 1.67e-027;    # Mass equivalent of 1 amu, kg\n",
      "\n",
      "#Calculations\n",
      "m1 = 34.97*u;    # Atomic mass of chlorine atom, kg\n",
      "m2 = 1.008*u;    # Atomic mass of hydrogen atom, kg\n",
      "mu = m1*m2/(m1 + m2);    # Reduced mass of the HCl system, kg\n",
      "delta_E = 0.36;    # Spacing between vibrational energy levels of the HCl molecule, eV\n",
      "omega = delta_E*e/h_bar;    # Angular frequency of vibration, rad/s\n",
      "kapa = mu*omega**2;    # Effective force constant for HCl molecule, N/m\n",
      "T = delta_E*e/k;    # Classical temperature associated with the rotational energy spacing, K\n",
      "\n",
      "#Results\n",
      "print \"The effective force constant for HCl molecule = %3d N/m\"%(math.ceil(kapa))\n",
      "print \"The classical temperature associated with the rotational energy spacing = %4d K\"%(math.ceil(T))\n",
      "#answers differ due to rounding errors"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The effective force constant for HCl molecule = 489 N/m\n",
        "The classical temperature associated with the rotational energy spacing = 4174 K\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.4, Page 358"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "e = 1.602e-019;    # Charge on an electron, C\n",
      "N_A = 6.023e+023;    # Avogadro's number\n",
      "alpha = 1.7476;    # Madelung constant\n",
      "E = -764.4e+003;    # Dissociation energy of NaCl molecule, J/mol\n",
      "V = E/N_A;    # Repulsive potential energy, J\n",
      "k = 8.988e+009;    # Coulomb's constant, N-Sq.m/C^2\n",
      "r0 = 0.282e-009;    # Equilibrium separation for nearest neighbour in NaCl, m\n",
      "\n",
      "#Calculations\n",
      "rho = r0*(1+r0*V/(k*alpha*e**2));    # Range parameter for NaCl, nm\n",
      "\n",
      "#Result\n",
      "print \"The range parameter for NaCl = %6.4f nm\"%(rho/1e-009)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The range parameter for NaCl = 0.0316 nm\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.5, Page 365"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "e = 1.602e-019;    # Charge on an electron, C\n",
      "r = 5.29e-011;    # Orbital radius of electron equal to Bohr radius, m\n",
      "B = 2.0;    # Applied magnetic field, T\n",
      "m = 9.11e-031;    # Mass of an electron, kg\n",
      "\n",
      "#Calculations\n",
      "delta_mu = e**2*r**2*B/(4*m);    # Induced diamagnetic moment in the atom, J/T\n",
      "\n",
      "#Result\n",
      "print \"The induced diamagnetic moment in the atom = %3.1e J/T\"%delta_mu"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The induced diamagnetic moment in the atom = 3.9e-29 J/T\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.6, Page 366"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "mu_B = 9.27e-024;    # Bohr's magneton, J/T\n",
      "B = 0.50;    # Applied magnetic field, T\n",
      "k = 1.38e-023;    # Boltzmann constant, J/K\n",
      "\n",
      "#Calculations&Results\n",
      "T = 10*mu_B*B/k;    # Temperature at which mu*B = 0.1k*T, K\n",
      "b_muB = mu_B*B/(k*T);\n",
      "ratio = b_muB/math.tanh(b_muB);    # Ratio of b_muB and tanh(b_muB)\n",
      "if (ratio - 1) < 0.01:\n",
      "    print \"The value of T = %4.2f K is suitable as a classical temperature.\"%T\n",
      "else:\n",
      "    print \"The value of T = %4.2f K is not suitable as a classical temperature.\"%T\n",
      "\n",
      "# For higher temperature\n",
      "T = 100;    # Given temperature\n",
      "b_muB = mu_B*B/(k*T);\n",
      "ratio = b_muB/math.tanh(b_muB);    # Ratio of b_muB and tanh(b_muB)\n",
      "if (ratio - 1) < 0.001:\n",
      "    print \"At the value of T = %4.2f K, the approximation is an excellent one.\"%T\n",
      "else:\n",
      "    print \"At the value of T = %4.2f K, the approximation is not an excellent.\"%T"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The value of T = 3.36 K is suitable as a classical temperature.\n",
        "At the value of T = 100.00 K, the approximation is an excellent one.\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.7, Page 374"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "k = 1.38e-023;    # Boltzmann constant, J/K\n",
      "e = 1.602e-019;    # Energy equivalent of 1 eV, J\n",
      "h = 6.62e-034;    # Planck's constant, Js\n",
      "c = 3.00e+008;    # Speed of light, m/s\n",
      "T_c = 9.25;    # Critical temperature for niobium, K\n",
      "\n",
      "#Calculations\n",
      "E_g = 3.54*k*T_c;    # Energy gap for niobium from BCS theory, J\n",
      "lamda = h*c/E_g;    # Minimum photon wavelength needed to break the Cooper pair, m\n",
      "\n",
      "#Results\n",
      "print \"The energy gap for niobium = %4.2f meV\"%(E_g/(e*1e-003))\n",
      "print \"The minimum photon wavelength needed to break the Cooper pair = %4.2e m\"%lamda"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The energy gap for niobium = 2.82 meV\n",
        "The minimum photon wavelength needed to break the Cooper pair = 4.39e-04 m\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.8, Page 382"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "r = 1e-002;    # Radius of the loop, m\n",
      "phi0 = 2.068e-015;    # Magnetic flux penetrating to the loop, T-Sq.m\n",
      "\n",
      "#Calculations\n",
      "A = math.pi*r**2;    # Area of the loop, Sq.m\n",
      "B = phi0/A;    # Magnetic field perpendicular to the loop, T\n",
      "\n",
      "#Result\n",
      "print \"The magnetic field perpendicular to the loop = %4.2e T\"%B"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The magnetic field perpendicular to the loop = 6.58e-12 T\n"
       ]
      }
     ],
     "prompt_number": 7
    }
   ],
   "metadata": {}
  }
 ]
}