summaryrefslogtreecommitdiff
path: root/Modern_Physics_by_K_S_Krane/chapter7_1.ipynb
blob: 84f294f8d1f9444644a53a80a976e6d9fbbd6b3a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
{
 "metadata": {
  "name": "",
  "signature": "sha256:bb88588092f5e168d4a1c62bb7bb87ac343b1c2045bd4d31cd2391090ea3e567"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "7: Classification of Solids"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 7.1, Page number 138"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#import modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "W=11000;     #wavelength(angstrom)\n",
      "\n",
      "#Calculation\n",
      "Eg=W/12400;     #energy gap(eV)\n",
      "\n",
      "#Result\n",
      "print \"Energy Gap is\",round(Eg,3),\"eV\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Energy Gap is 0.887 eV\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 7.2, Page number 138"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#import modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "p=1.7*10**-6;      #resistivity(ohm-cm)\n",
      "d=8.96;         #density(g/cc)\n",
      "W=63.5;         #atomic weight(gm)\n",
      "Na=6.02*10**23;   #Avagadro number(per g-mol)\n",
      "e=1.6*10**-19;     #the charge on electron(C)\n",
      "\n",
      "#Calculation\n",
      "n=8.96*Na/W;      #number of Cu atoms per cc\n",
      "mewe=1/(p*e*n);     #mobility of electrons(cm^2/V-s)\n",
      "\n",
      "#Result\n",
      "print \"mobility of electrons is\",round(mewe,1),\"cm^2/V-s\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "mobility of electrons is 43.3 cm^2/V-s\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 7.3, Page number 139"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#import modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "d1=2.5*10**19;      #density of charge carriers(per m^3)\n",
      "d2=4.2*10**28;      #density of germanium atoms(per m^3)\n",
      "mewe=0.36;          #mobilty of electrons(m^2/V-s)\n",
      "Na=6.02*10**23;     #Avgraodo no.(per g-mol)\n",
      "e=1.6*10**-19;      #the charge on electron(C)\n",
      "\n",
      "#Calculation\n",
      "Nd=d2/10**6;       #density of added impurity atoms(atoms/m^3)\n",
      "sigma_n=Nd*e*mewe;        #conductivity(mho/m)\n",
      "rho_n=1/sigma_n;          #resistivity of doped germanium(ohm-m)\n",
      "\n",
      "#Result\n",
      "print \"resistivity of doped germanium is\",round(rho_n*10**3,3),\"*10**-3 ohm-m\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "resistivity of doped germanium is 0.413 *10**-3 ohm-m\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 7.4, Page number 139"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#import modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "Eg=0.75;      #energy gap(eV)\n",
      "\n",
      "#Calculation\n",
      "lamda=12400/Eg;     #wavelength(angstrom)\n",
      "\n",
      "#Result\n",
      "print \"wavelength is\",int(lamda),\"angstrom\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "wavelength is 16533 angstrom\n"
       ]
      }
     ],
     "prompt_number": 12
    }
   ],
   "metadata": {}
  }
 ]
}