1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
|
{
"metadata": {
"name": "",
"signature": "sha256:70cab6f9b725623fc2451b245c5190bb3397c02f8debec03cc8b79cdd3e4b714"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"1: Electric and Magnetic Fields"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 1.1, Page number 4"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#import modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"q1=3.2*10**-19;\n",
"q2=q1; #q1 and q2 are the values of charge on alpha-particle(C)\n",
"d=10**-13; #distance between two alpha-particles(m)\n",
"m1=6.68*10**-27;\n",
"m2=m1; #m1 and m2 are masses of alpha-particles(kg)\n",
"G=6.67*10**-11; #Gravitational constant(Nm^2/kg^2)\n",
"\n",
"#Calculation\n",
"F1=(9*10**9)*(q1*q2)/(d**2); #calculation of electrostatic force(N)\n",
"F2=G*(m1*m2)/(d**2); #calculation of electrostatic force(N)\n",
"F1=math.ceil(F1*10**4)/10**4; #rounding off to 4 decimals\n",
"F1 = F1*10**2;\n",
"\n",
"#Result\n",
"print \"The electrosatic force is\",F1,\"*10**-2 N\"\n",
"print \"The gravitational force is\",round(F2/1e-37,3),\"*10**-37 N\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The electrosatic force is 9.22 *10**-2 N\n",
"The gravitational force is 2.976 *10**-37 N\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 1.2, Page number 4"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#import modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"m=9.1*10**-31; #mass of elctron(kg)\n",
"q=1.6*10**-19; #charge on electron(C)\n",
"g=9.81; #acceleration due to gravity(m/s^2)\n",
"\n",
"#Calculation\n",
"Fg=m*g; #gravitational force(N)\n",
"d=math.sqrt((9*10**9*q**2)/Fg); #equating gravitational force with electrosatic force(m)\n",
"d=math.ceil(d*10**3)/10**3; #rounding off to 4 decimals\n",
"\n",
"#Result\n",
"print \"The distance of separation is\",d,\"m\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The distance of separation is 5.081 m\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 1.3, Page number 4"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#import modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"d=0.02; #distance between plates(m)\n",
"V=400; #potential differnce of plates(V)\n",
"q=1.6*10**-19; #charge on a proton(C)\n",
"\n",
"#Calculation\n",
"E=V/d; #electric field intensity between plates(V/m)\n",
"F=q*E; #electrostatic force on oil drop(N)\n",
"\n",
"#Result\n",
"print \"The electric field intensity between plates is\",E,\"V/m\"\n",
"print \"The force on proton is\",F,\"N\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The electric field intensity between plates is 20000.0 V/m\n",
"The force on proton is 3.2e-15 N\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 1.4, Page number 4"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#import modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"d=0.02; #distance between plates(m)\n",
"q=1.6*10**-19; #charge on oil drop(C)\n",
"V=6000; #potential differnce of plates(V)\n",
"g=9.81; #acceleration due to gravity(m/s^2)\n",
"\n",
"#Calculation\n",
"E=V/d; #electric field intensity between plates(V/m)\n",
"F=q*E; #electrostatic force on oil drop(N)\n",
"m=F/g; #equating the weight of oil drop to the electrostatic force on it(kg)\n",
"\n",
"#Result\n",
"print \"The mass of oil drop is\",round(m/1e-15,3),\"*10**-15 kg\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The mass of oil drop is 4.893 *10**-15 kg\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 1.5, Page number 5"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#import modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"V=150; #potential difference between anode and cathode(V)\n",
"m=9.31*10**-31; #mass of an electron(kg)\n",
"q=1.6*10**-19; #charge on an electron(C)\n",
"\n",
"#Calculation\n",
"E=q*V; #energy gained by electron during speeding from cathode to anode(J)\n",
"vel=math.sqrt(E*2/m); #equating with kinetic energy of electron(m/s)\n",
"vel=vel*10**-6;\n",
"vel=math.ceil(vel*10)/10; #rounding off to 1 decimal\n",
"\n",
"#Result\n",
"print \"The velocity is\",vel,\"*10**6 m/s\"\n",
"print \"answer in the book is wrong by 1 decimal\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The velocity is 7.2 *10**6 m/s\n",
"answer in the book is wrong by 1 decimal\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 1.6, Page number 5"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#import modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"V=5*10**6; #potential differnce through which alpha-particle is accelerated(V)\n",
"e=1.6*10**-19; #charge on electron(C)\n",
"\n",
"#Calculation\n",
"E1=2*V; #electronic charge on alpha-particle(eV)\n",
"E2=E1/10**6; #energy(MeV)\n",
"E3=E1*e; #energy(J)\n",
"E1=E1*10**-7; \n",
"\n",
"#Result\n",
"print \"The energy is\",E1,\"*10**7 eV\"\n",
"print \"The energy is\",E2,\"MeV\"\n",
"print \"The energy is\",E3,\"J\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The energy is 1.0 *10**7 eV\n",
"The energy is 10.0 MeV\n",
"The energy is 1.6e-12 J\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 1.7, Page number 6"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#import modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"r=0.528*10**-10; #radius of the orbit(m)\n",
"q=-1.6*10**-19; #charge on electron(C)\n",
"Q=1.6*10**-19; #charge on Hydrogen nucleus(C)\n",
"Eo=8.854*10**-12; #permittivity in free space(F/m)\n",
"\n",
"#Calculation\n",
"E=(q*Q)/(8*3.14*Eo*r); #electric field intensity between plates(V/m)\n",
"E1=E/(1.6*10**-19); #electrifeild intensity(eV)\n",
"E=E*10**19;\n",
"E=math.ceil(E*10**2)/10**2; #rounding off to 2 decimals\n",
"E1=math.ceil(E1*10**2)/10**2; #rounding off to 2 decimals\n",
"\n",
"#Result\n",
"print \"The total energy is\",E,\"*10**-19 J\"\n",
"print \"The total energy is\",E1,\"eV\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The total energy is -21.79 *10**-19 J\n",
"The total energy is -13.62 eV\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 1.8, Page number 9"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#import modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"Q=3.2*10**-19; #charge on alpha-particle(C)\n",
"m=6.68*10**-27; #mass on alpha-particle(kg)\n",
"B=1.5; #transverse magnetic field of flux density(Wb/m^2)\n",
"v=5*10**6; #velocity of alpha-particle(m/s)\n",
"\n",
"#Calculation\n",
"F=B*Q*v; #electrostatic force on oil drop(N)\n",
"R=m*v/(Q*B); #radius(m)\n",
"R=math.ceil(R*10**2)/10**2; #rounding off to 2 decimals\n",
"R1 = R*100; #radius(cm)\n",
"\n",
"#Result\n",
"print \"The force on particle is\",F,\"N\"\n",
"print \"The radius of its circular path\",R,\"m or\",R1,\"cm\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The force on particle is 2.4e-12 N\n",
"The radius of its circular path 0.07 m or 7.0 cm\n"
]
}
],
"prompt_number": 8
}
],
"metadata": {}
}
]
}
|