summaryrefslogtreecommitdiff
path: root/Modern_Physics_by_K_S_Krane/Chapter6_2.ipynb
blob: 09d16e38068fe4f83c073df649ea9ae78a470042 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
{
 "metadata": {
  "name": "MP-6"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": "The Rutherford Bohr Model"
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 6.1 Page 178"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#initiation of variable\nfrom math import sqrt, pi\nR=0.1;Z=79.0; x=1.44;          #x=e^2/4*pi*epsi0\nzkR2=2*Z*x/R                # from zkR2= (2*Z*e^2)*R^2/(4*pi*epsi0)*R^3\nmv2=10.0*10**6;                #MeV=>eV\n\n#calculation\ntheta=sqrt(3.0/4)*zkR2/mv2;     #deflection angle\ntheta=theta*(180/pi);        #converting to degrees\n\n#result\nprint\"Hence the average deflection angle per collision in degrees is\",round(theta,3 );",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "Hence the average deflection angle per collision in degrees.is 0.011\n"
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 6.2 Page 181"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#initiation of vriable\nfrom math import sin, cos, tan, sqrt, pi\nNa=6.023*10**23;p=19.3;M=197.0;\nn=Na*p/M;         #The number of nuclei per atom\nt=2*10**-6;Z=79;K=8*10**6;x=1.44; theta=90.0*pi/180;  #x=e^2/4*pi*epsi0\nb1=t*Z*x/tan(theta/2)/(2*K)         #impact parameter b\nf1=n*pi*b1**2*t                      #scattering angle greater than 90\n\n#result\nprint\"The fraction of alpha particles scattered at angles greater than 90 degrees is %.1e\" %f1;\n\n#part b\ntheta=45.0*pi/180;\nb2=t*Z*x/tan(theta/2)/(2*K);\nf2=n*pi*b2**2*t;                  #scattering angle greater than 45\nfb=f2-f1                       #scattering angle between 45 to 90\n\n#result\nprint\"The fraction of particles with scattering angle from 45 to 90 is %.1e\" %fb;",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "The fraction of alpha particles scattered at angles greater than 90 degrees is 7.5e-05\nThe fraction of particles with scattering angle from 45 to 90 is 3.6e-04\n"
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 6.3 Page 185"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#initiation of vriable\nfrom math import sin, cos, tan, sqrt, pi\nZ=79.0;x=1.44;K=8.0*10**6;z=2;    #where x=e^2/4*pi*epsi0;z=2 for alpha particles\n\n#calculation\nd=z*x*Z/K;                   #distance\n\n#result\nprint \"The distance of closest approasch in nm. is\",d*10**-9",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": " The distance of closest approasch in nm. is 2.844e-14\n"
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 6.4 Page 188"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#initiation of variable\nsl=820.1;n0=3.0;  #given values\nn=4;w=sl*(n**2/(n**2-n0**2)); \n#result\nprint \"The 3 longest possible wavelengths are in nm respectively are\",w,;    \n\n#partb\nn=5.0;w=sl*(n**2/(n**2-n0**2)); \n\n#result\nprint \"(in nm)\",round(w,3),;\n\n#partc\nn=6.0;w=sl*(n**2/(n**2-n0**2));\n\n#result\nprint \" (in nm )\",round(w,3);\n",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "The 3 longest possible wavelengths are in nm respectively are 1874.51428571 (in nm) 1281.406  (in nm ) 1093.467\n"
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 6.5 Page 189"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#initiation of variable\nsl=364.5;n=3.0;           #given variables and various constants are declared in the subsequent steps wherever necessary   \nw1=sl*(n**2/(n**2-4));     #longest wavelength of balmer \nc=3.0*10**8;\nf1=c/(w1*10**-9);         #corresponding freq.\nn0=1.0;n=2.0;                 \n\n#calculation\nw2=91.13*(n**2/(n**2-n0**2)); #first longest of lymann   \nf2=c/(w2*10**-9);          #correspoding freq\nn0=1.0;n=3.0\nw3=91.13*(n**2/(n**2-n0**2));      #second longest of lymann\nf3=3.0*10**8/(w3*10**-9)             #corresponding freq.\n\n#result\nprint \"The freq. corresponding to the longest wavelength of balmer is %.1e\" %f1,\" & First longest wavelength  of Lymann is %.1e\" %f2;\nprint\"The sum of which s equal to %.1e\" %(f1+f2);\nprint\"The freq. corresponding to 2nd longest wavelength was found out to be %.1e\" %f3,\"Hence Ritz combination principle is satisfied.\";",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "The freq. corresponding to the longest wavelength of balmer is 4.6e+14  & First longest wavelength  of Lymann is 2.5e+15\nThe sum of which s equal to 2.9e+15\nThe freq. corresponding to 2nd longest wavelength was found out to be 2.92622261239e+15 Hence Ritz combination principle is satisfied.\n"
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 6.6 Page 192"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#initiation of variable\nRinfi=1.097*10**7;  #known value \nn1=3.0;n2=2.0;       #first 2 given states\n\n#calculation\nw=(n1**2*n2**2)/((n1**2-n2**2)*Rinfi);\n\n#result\nprint\"Wavelength of trnasition from n1=3 to n2=2 in nm is\",round(w*10**9,3);\n\n#partb\nn1=4.0;n2=2.0;      #second 2 given states  \nw=(n1**2*n2**2)/((n1**2-n2**2)*Rinfi);\n\n#result\nprint\"Wavelength of trnasition from n1=3 to n2=2 in nm is\",round(w*10**9,3);",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "Wavelength of trnasition from n1=3 to n2=2 in nm is 656.335\nWavelength of trnasition from n1=3 to n2=2 in nm is 486.174\n"
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 6.7 Page 194"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#initiation of variable\nn1=3.0;n2=2.0;Z=4.0;hc=1240.0;\ndelE=(-13.6)*(Z**2)*((1/(n1**2))-((1/n2**2)));\n\n#calculation\nw=(hc)/delE; #for transition 1\n\n#result\nprint \"The wavelngth of radiation for transition(2->3) in nm is\", round(w,3);\n\n#for transition 2\nn1=4.0;n2=2.0;   # n values for transition 2\ndelE=(-13.6)*(Z**2)*((1/n1**2)-(1/n2**2));\nw=(hc)/delE;\n\n#result\nprint \"The wavelngth of radiation emitted for transition(2->4) in nm is\", round(w,3);",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "The wavelngth of radiation for transition(2->3) in nm is 41.029\nThe wavelngth of radiation emitted for transition(2->4) in nm is 30.392\n"
      }
     ],
     "prompt_number": 11
    }
   ],
   "metadata": {}
  }
 ]
}