summaryrefslogtreecommitdiff
path: root/Modern_Physics_by_K_S_Krane/Chapter12_2.ipynb
blob: ccacecc15cee5d96a86b30dae9a351be59b9253f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
{
 "metadata": {
  "name": "MP-12"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": "Nuclear Structure and Reactivity"
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 12.1 Page 375"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#initiation of variable\nZ=2;A=4;N=A-Z;         # Given values\n\n#result\nprint\"The following method of representing atoms is followed throughout the chapter\\n\\t\\t x,y,z\\n where x=atomic number y=mass number z= Neutron Number S=symbol of the atom\\n\\n\"\nprint\"The helium can be reperesented as He-- \",Z,A,N;\n\n#part b\nZ=50.0;N=66.0;A=Z+N;       # Given values and standard formulae\nprint\"The Tin can be reperesented as Sn-- \",Z,A,N;\n\n\n#part c\nA=235;N=143;Z=A-N;\nprint\"The Uranium can be reperesented as U-- \",Z,A,N;",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "The following method of representing atoms is followed throughout the chapter\n\t\t x,y,z\n where x=atomic number y=mass number z= Neutron Number S=symbol of the atom\n\n\nThe helium can be reperesented as He--  2 4 2\nThe Tin can be reperesented as Sn--  50.0 116.0 66.0\nThe Uranium can be reperesented as U--  92 235 143\n"
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 12.2 Page 377"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#initiation of variable\nr0=1.2;         #standard value.\nA=12.0; \nr= r0*A**(1.0/3);\n\n#result\nprint\"The value of mean radius for C in fm is\",round(r,3);\n\n#part2\nA=70.0;        #given value\nr= r0*A**(1.0/3);\n\n#result\nprint\"The value of mean radius for C in fm is\",round(r,3);\n\n#part3\nA=209;\nr= r0*A**(1.0/3);\n\n#result\nprint\"The value of mean radius for C in fm is\",round(r,3);",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "The value of mean radius for C in fm is 2.747\nThe value of mean radius for C in fm is 4.946\nThe value of mean radius for C in fm is 7.121\n"
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 12.3 Page 379"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#initiation of variable\nfrom math import pi\nm=1.67*10**-27; r0=1.2*10**-15; v=4*pi*(r0**3)/3.0     #standard values of mass radius and volume\n\n#calculation\np=m/v;                                               #denisty \n\n#result\nprint\"Density of typical nucleus in kg/m3 is %.1e\" %p;\n\n#part 2\nr0=0.01;v=4*pi*(r0**3)/3.0;p=2.0*10**17;              #/hypothetical values\nm1=p*v;                                  \n\n#result\nprint\"The mass of the hypothetical nucleus would be in Kg %.1e\" %m1;\n",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "Density of typical nucleus in kg/m3 is 2.3e+17\nThe mass of the hypothetical nucleus would be in Kg 8.4e+11\n"
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 12.4 Page 380"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#initiation of variable\nN=30.0;Z=26.0;A=56.0;Mn=1.008665;Mp=1.007825;m=55.934939;c2=931.5; #given values and constants for case-1\nB=((N*Mn)+(Z*Mp)-(m))*c2;                                  #binding energy(per nucleon)\n\n#result\nprint\"Binding nergy per nucleon for 26,56Fe30 in MeV is\",round(B/A,3);\n\n#part 2\nN=146.0;Z=92.0;A=238.0;Mn=1.008665;Mp=1.007825;m=238.050785;c2=931.5;      #given values and constants for case-2\nB=((N*Mn)+(Z*Mp)-(m))*c2;                             #binding energy(per nucleon)\n\n#result\nprint\"Binding nergy per nucleon for 26,56Fe30 in MeV is\",round(B/A,3);",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "Binding nergy per nucleon for 26,56Fe30 in MeV is 8.79\nBinding nergy per nucleon for 26,56Fe30 in MeV is 7.57\n"
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 12.5 Page 382"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#initiation of variable\nfrom math import exp\nt12=2.7*24*3600;              #converting days into seconds\nw=0.693/t12;                  #lambeda\n\n#result\nprint\"The decay constant in sec is %.2e\" %w; \n\n#partb\nprint\"The decay constant is equal to probability of decay in one second hence %.2e\" %w;\n\n#partc\nm=10**-6;Na=6.023*10**23; M=198.0;     #given values and constants\nN=m*Na/M;                        #number of atoms in the sample \nAo=w*N;             #activity\n\n#result\nprint\"The activity was found out to be in Ci is %.2e\" %Ao;        \n\n#partd\nt=7*24*3600.0;         #given time\nA=Ao*exp(-w*t);        #activity\n\n#result\nprint\"The activity after one week was found out to be in decays/sec %.1e\" %A;",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "The decay constant in sec is 2.97e-06\nThe decay constant is equal to probability of decay in one second hence 2.97e-06\nThe activity was found out to be in Ci is 9.04e+09\nThe activity after one week was found out to be in decays/sec 1.5e+09\n"
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 12.6 Page 384"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#initiation  of variable\nt1=4.55*10**9;t2=7.04*10**8;       #given values of time at 2 different instants\n\n#calculation\nage=t1/t2;\nr=2**age;\n\n#result\nprint \"The original rock hence contained\",round(r,3),\"Na atoms of 235U where Na is the Avagadro''s Number=6.023*10^23\";",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "The original rock hence contained 88.222 Na atoms of 235U where Na is the Avagadro''s Number=6.023*10^23\n"
      }
     ],
     "prompt_number": 13
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 12.7 Page 385"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#initiation of variable\nm236Ra=226.025403;\nm222Rn=222.017571;\nm4He=4.002603;c2=931.5; #mass of various elements and c2=c^2\n\n#calculation\nQ=(m236Ra-m222Rn-m4He)*c2;#Q of the reaction\nA=226.0              \nK=((A-4)/A)*Q;                           #kinetic energy\n\n#result\nprint\"The kinetic energy of the alpha particle in Mev is\",round(K,3);",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "The kinetic energy of the alpha particle in Mev is 4.785\n"
      }
     ],
     "prompt_number": 14
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 12.8 Page 387"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#initiation of variable\nm226Ra=226.025403; #mass of various elements\nm212Pb=211.991871;\nm14c=14.003242;\nc2=931.5;       #value of c^2\n\n#calculation\nQ=(m226Ra-m212Pb-m14c)*c2;      #Q of the reaction\n\n#result\nprint\"The value of Q for 14c emission in MeV is\",round(Q,3);\nprint\"The probability of 14c emission is 10^-9 times that of an alpha particle since the energy barrier for 14c emission is nearly 3 times higher and thicker.\"",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "The value of Q for 14c emission in MeV is 28.215\nThe probability of 14c emission is 10^-9 times that of an alpha particle since the energy barrier for 14c emission is nearly 3 times higher and thicker.\n"
      }
     ],
     "prompt_number": 15
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 12.9 Page 389"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#initiation of variable\nm23Ne=22.994465; #mass of various elements\nm23Na=22.989768;\nc2=931.5;          #value of c^2\n\n#calculation\nQ=(m23Ne-m23Na)*c2;     #Q of the reaction\n\n#result\nprint \"Hence the maximum kinetic energy of the emitted electrons in MeV is\",round(Q,3);",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "Hence the maximum kinetic energy of the emitted electrons in MeV is 4.375\n"
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 12.10 Page 390"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#initiation of variable\nm40K=39.963999;         #mass of various particles\nm40Ca=39.962591;\nc2=931.5;                    #value of c^2 in MeV\n\n#calculation\nQb1=(m40K-m40Ca)*c2;       #Q value of the reaction\n\n#result\nprint\"The Q value for -VE beta emission in Mev in\",round(Qb1,3);\n\n#partb\nm40K=39.963999;          #mass of various particles\nm40Ar=39.962384;\nme=0.000549;\nQb2=(m40K-m40Ar-2*me)*c2;         #Q value of the reaction\n\n#result\nprint\"The Q value for +VE beta emission in Mev in\",round(Qb2,3);\n\n#partc\nm40K=39.963999;\nm40Ar=39.962384;\n\n#calculation\nQec=(m40K-m40Ar)*c2;\n\n#result\nprint\"The Q value for +VE beta emission in Mev in\",round(Qec,3);",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "The Q value for -VE beta emission in Mev in 1.312\nThe Q value for +VE beta emission in Mev in 0.482\nThe Q value for +VE beta emission in Mev in 1.504\n"
      }
     ],
     "prompt_number": 17
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 12.11 Page 392"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#initiation of variable\nMg=12.000000; #mass of the carbon atom in amu\nc2=931.5; \nEg=4.43;     #given energy of gamma ray \nMex=Mg+(Eg/c2);     #mass in excited state\nMe=0.000549;        #mass of an electron\n\n#calculation\nQ=(12.018613-Mex-2*Me)*c2;     #Q of the particle\n\n#result\nprint\"The maximum value of kinetic energy is in MeV\",round(Q,3);\n",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "The maximum value of kinetic energy is in MeV 11.885\n"
      }
     ],
     "prompt_number": 18
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 12.12 Page 393"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#initiation of variable\nm238U=238.050786; #mass of various quantities\nm206Pb=205.974455;\nm4He=4.002603;\nc2=931.5;     #constants\nNa=6.023*10**23;   #avagadro's number\n\n#calculation\nQ=(m238U-m206Pb-8*m4He)*c2; \nt12=(4.5)*10**9*(3.16*10**7);    #half life years to seconds conversion\nw=0.693/t12;                 # lambeda\nNoD=(Na/238)*w;      #number of decays\nE=NoD*Q*(1.6*10**-19)*10**6;        #rate of liberation of energy,converting MeV to eV\n\n#result\nprint\"Rate of energy liberation in W is %.2e\" %E;",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "Rate of energy liberation in W is 1.02e-07\n"
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 12.13 Page 395"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#initiation of variable\nfrom math import log\nR=0.5;t12=4.5*10**9;                 #value of radius and half-life \nt1=(t12/0.693)*log(1+(1/R));        #age of rock 1\nR=1.0;\nt2=(t12/0.693)*log(1+(1/R));       #age of rock-2\nR=2.0\nt3=(t12/0.693)*log(1+(1/R));       #age of rock 3\n\n#result\nprint\"The ages of rock samples in years respectively are %.1e\"%t1,\" %.1e\" %t2,\"  %.1e\" %t3;",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "The ages of rock samples in years respectively are 7.1e+09  4.5e+09   2.6e+09\n"
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 12.14 Page 397"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#initiation of variable\nfrom math import log\nP=2.0*10**14; V=2.0*10**-14; R=8.314; T=295.0;Na=6.023*10**23;   #varoius constants and given values\n\n#calculation\nn=P*V/(R*T);       #ideal gas law\nN=Na*n;f=10**-12         #avagadaro's number and fracction of carbon molecules\nt12=5730*3.16*(10**7);   #half life\nA=(0.693/t12)*N*f;    #activity\nD1w=A*7*24*60*60;       #decays per second\n\n#result\nprint\"the no. of decays per second is %.2e\" %A\nprint\"The no of decays pers week is \",round(D1w);\n    \n    \n#partb\nc1=1420.0;             #concentration at instant 1\nc2=D1w;              #concentration at instant 2\nt12y=5730;          #half life\nt=t12y*log(c2/c1)/0.693;            #age of the sample\n\n#result\nprint\"Age of the sample in years is\",round(t,3);\nprint\"the answer in the book is wrong\"",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "the no. of decays per second is 3.76e-03\nThe no of decays pers week is  2274.0\nAge of the sample in years is 3892.57\n"
      }
     ],
     "prompt_number": 15
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "",
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}