summaryrefslogtreecommitdiff
path: root/Modern_Physics_by_B._L._Theraja/chapter14_1.ipynb
blob: b6ba7ca8375265dec520eebc43ef6e8dc944c66c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
{
 "metadata": {
  "name": "",
  "signature": "sha256:f3dfb0a49e3f8552798e92e62c041d1f0b46371fc7dc05dfc9c1bf5833f43216"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "14: Nuclear Fission And Fusion"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 14.1, Page number 269"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#import modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "E1=7.8;     #avg. B.E per nucleon(MeV)\n",
      "E2=8.6;     #for fissin fragments(MeV)\n",
      "\n",
      "#Calculation\n",
      "FER=(234*E2)-(236*E1);     #Fission energy released(MeV)\n",
      "\n",
      "#Result\n",
      "print \"Fission energy released is\",FER,\"MeV\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Fission energy released is 171.6 MeV\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 14.2, Page number 273"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#import modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "m1=235.044;    #mass of 92U235(a.m.u)\n",
      "m2=97.905;     #mass of 42Mo98(a.m.u)\n",
      "m3=135.917;    #mass of 54Xe136(a.m.u)\n",
      "#rxn = 0n1 + 92U235 = 42Mo98 + 54Xe136 + 4 -1e0 + 2 0n1\n",
      "\n",
      "#Calculation\n",
      "LHSm=1.009+m1;\n",
      "RHSm=m2+m3+(4*0.00055)+(2*1.009);\n",
      "delta_m=LHSm-RHSm;        #mass defect(a.m.u)\n",
      "E=delta_m*931;         #energy released(MeV)\n",
      "\n",
      "#Result\n",
      "print \"mass defect is\",round(delta_m,3),\"a.m.u\"\n",
      "print \"energy released is\",int(E),\"MeV\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "mass defect is 0.211 a.m.u\n",
        "energy released is 196 MeV\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 14.3, Page number 274"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#import modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "m1=1.00813;    #mass of 1H1(a.m.u)\n",
      "m2=4.00386;    #mass of 2He4(a.m.u)\n",
      "SC=1.35;     #solar constant(kW/m^2)\n",
      "d=1.5*10**11;    #distance b/w earth and sum(m)\n",
      "e=1.6*10**-19;   #the charge on electron(C)\n",
      "Na=6.02*10**26;    #Avgraodo no.(per kg mole)\n",
      "#rxn = 4 1H1 = 2He4 + 2 1e0\n",
      "\n",
      "#Calculation\n",
      "dm=(4*m1)-m2;\n",
      "E=dm*931;     #energy produced(MeV)\n",
      "EP=E/4;      #energy produced per atom(MeV)\n",
      "EP=EP*10**6*e;    #conversion in J\n",
      "EPkg=EP*Na;     #energy produced by 1 kg of hydrogen\n",
      "SC=SC*1000;     #conversion(J/s-m^2)\n",
      "SA=4*math.pi*d**2;   #surface area of sphere\n",
      "ER=SC*SA;      #energy recieved per second\n",
      "m=ER/EPkg;     #mass of hydrogen consumed(tonnes/second)\n",
      "\n",
      "#Result\n",
      "print \"mass of hydrogen consumed is\",round(m/10**11,3),\"*10**8 tonnes/second\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "mass of hydrogen consumed is 5.941 *10**8 tonnes/second\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 14.4, Page number 275"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#import modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "m1=2.01478;     #mass of 1H2(a.m.u)\n",
      "m2=4.00388;     #mass of 2He4(a.m.u)\n",
      "#rxn 1H2 + 1H2 = 2He4 + Q\n",
      "\n",
      "#Calculation\n",
      "Q=2*m1-m2;        #energy liberated(MeV) \n",
      "Q=Q*931;          #conversion in MeV\n",
      "\n",
      "#Result\n",
      "print \"energy liberated is\",round(Q,1),\"MeV\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "energy liberated is 23.9 MeV\n"
       ]
      }
     ],
     "prompt_number": 11
    }
   ],
   "metadata": {}
  }
 ]
}