summaryrefslogtreecommitdiff
path: root/Modern_Physics_By_G.Aruldas/Chapter15_1.ipynb
blob: 48af147384d4f6bbe9f79b276bdfb97ea675e6f5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
{
 "metadata": {
  "name": "",
  "signature": "sha256:ede2b0bb266c67744fbe14f69a09ec9b5592c13400e7d0bf2db5fa598ebe9db1"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "15: Lasers"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 15.1, Page number 283"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "k=1.38*10**-23;   #boltzmann constant(J/K)\n",
      "T=1000;    #temperature(K)\n",
      "new1=7.5*10**14;  \n",
      "new2=4.3*10**14;\n",
      "h=6.626*10**-34;    #planck's constant(Js)\n",
      "\n",
      "#Calculation\n",
      "kT=k*T;\n",
      "#optical region extends from 4000 to 7000 angstrom\n",
      "hnew=h*(new1-new2);  \n",
      "\n",
      "#Result\n",
      "print \"value of kT is\",kT,\"J\"\n",
      "print \"value of hnew is\",hnew,\"J\"\n",
      "print \"hnew>kT.therefore spontaneous transitions are dominant ones in optical region\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "value of kT is 1.38e-20 J\n",
        "value of hnew is 2.12032e-19 J\n",
        "hnew>kT.therefore spontaneous transitions are dominant ones in optical region\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 15.2, Page number 298"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "h=6.626*10**-34;    #planck's constant(Js)\n",
      "c=3*10**8;    #velocity of light(m/sec)\n",
      "P=0.6;   #power(watt)\n",
      "T=30*10**-3;    #time(s)\n",
      "lamda=640*10**-9;   #wavelength(m)\n",
      "\n",
      "#Calculation\n",
      "E=P*T;    #energy deposited(J)\n",
      "n=E*lamda/(h*c);   #number of photons in each pulse\n",
      "\n",
      "#Result\n",
      "print \"energy deposited is\",E,\"J\"\n",
      "print \"number of photons in each pulse is\",round(n/10**16,1),\"*10**16\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "energy deposited is 0.018 J\n",
        "number of photons in each pulse is 5.8 *10**16\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 15.3, Page number 298"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "lamda=5000*10**-10;   #wavelength(m)\n",
      "f=0.2;   #focal length(m)\n",
      "a=0.009;   #radius of aperture(m)\n",
      "P=2.5*10**-3;   #power(W)\n",
      "\n",
      "#Calculation\n",
      "A=math.pi*lamda**2*f**2/a**2;    #area of spot at focal plane(m**2)\n",
      "I=P/A;   #intensity at focus(W/m**2)\n",
      "\n",
      "#Result\n",
      "print \"area of spot at focal plane is\",round(A*10**10,2),\"*10**-10 m**2\"\n",
      "print \"intensity at focus is\",round(I/10**6,3),\"*10**6 W/m**2\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "area of spot at focal plane is 3.88 *10**-10 m**2\n",
        "intensity at focus is 6.446 *10**6 W/m**2\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 15.4, Page number 298"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "lamda=693*10**-9;   #wavelength(m)\n",
      "D=3*10**-3;    #diameter of mirror(m)\n",
      "d=300*10**3;   #distance from earth(m)\n",
      "\n",
      "#Calculation\n",
      "delta_theta=1.22*lamda/D;    #angular spread(rad)\n",
      "a=delta_theta*d;    #diameter of beam on satellite(m)\n",
      "\n",
      "#Result\n",
      "print \"angular spread is\",round(delta_theta*10**4,2),\"*10**-4 rad\"\n",
      "print \"diameter of beam on satellite is\",round(a,2),\"m\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "angular spread is 2.82 *10**-4 rad\n",
        "diameter of beam on satellite is 84.55 m\n"
       ]
      }
     ],
     "prompt_number": 15
    }
   ],
   "metadata": {}
  }
 ]
}