1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
|
{
"metadata": {
"name": "",
"signature": "sha256:90fc77a4706b2ba6c4e383a2e0d80f0a572a43d837aa619ea730d827f91d4409"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"3: The Atomic Structure"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 3.1, Page number 25"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#import modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"Z=79; #atomic number of gold\n",
"e=1.6*10**-19; #electron charge(C)\n",
"Eo=8.854*10**-12; #absolute permitivity of free space(F/m)\n",
"K=7.68*1.6*10**-13; #kinectic energy(J)\n",
"\n",
"#calculation\n",
"D=(2*Z*e**2)/(4*math.pi*Eo*K); #closest distance of approach(m)\n",
"\n",
"#Result\n",
"print \"The closest distance of approach is\",round(D/1e-14,2),\"*10**-14 m\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The closest distance of approach is 2.96 *10**-14 m\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 3.2, Page number 28"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#import modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"Z=1; #atomic number of hydrogen\n",
"e=1.6*10**-19; #electron charge(C)\n",
"h=6.625*10**-34; #plank's constant(J-s)\n",
"m=9.1*10**-31; #mass of an electron(kg)\n",
"Eo=8.854*10**-12; #absolute permitivity of free space(F/m)\n",
"c=3*10**8; #speed of light(m/s)\n",
"n=1; #ground state\n",
"\n",
"#calculation\n",
"v=9*10**9*(2*math.pi*Z*e**2)/(n*h); #velocity of ground state(m/s)\n",
"r=(Eo*n**2*h**2)/(math.pi*m*e**2); #radius of Bohr orbit in ground state(m)\n",
"t=(2*math.pi*r)/v; #time taken by electron to traverse the bohr first orbit(s)\n",
"R=(m*(e**4))/(8*(Eo**2)*(h**3)*c); #Rhydberg contstant(m^-1)\n",
"#v=v*10**-5;\n",
"#v=math.ceil(v*10**3)/10**3; #rounding off to 3 decimals\n",
"#r=r*10**10;\n",
"#R=R/10**6;\n",
"\n",
"#Result\n",
"print \"velocity of ground state\",round(v/1e+5,2),\"*10^5 m/s\"\n",
"print \"radius of Bohr orbit in ground state\",round(r/1e-10,2),\"*10^-10 m\"\n",
"print \"time taken by electron to traverse the bohr first orbit\",round(t/1e-16,2),\"micro s\"\n",
"print \"Rhydberg constant is\",round(R/1e+6,3),\"*10**6 m^-1\"\n",
"print \"answer for Rhydberg contstant given in the book differs in the 2nd decimal point\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"velocity of ground state 21.85 *10^5 m/s\n",
"radius of Bohr orbit in ground state 0.53 *10^-10 m\n",
"time taken by electron to traverse the bohr first orbit 1.53 micro s\n",
"Rhydberg constant is 10.901 *10**6 m^-1\n",
"answer for Rhydberg contstant given in the book differs in the 2nd decimal point\n"
]
}
],
"prompt_number": 18
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 3.3, Page number 29"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#import modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"B=2.179*10**-16; #constant(J)\n",
"h=6.6*10**-34; #plank's constant(J-s)\n",
"\n",
"#calculation\n",
"E3=-B/3**2; #energy in 3rd orbit(J)\n",
"E2=-B/2**2; #energy in 2nd orbit(J) \n",
"f=(E3-E2)/h; #frequency of radiation(Hz) \n",
"\n",
"#Result\n",
"print \"frequency of radiation\",round(f/1e+16,1),\"*10**16 Hz\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"frequency of radiation 4.6 *10**16 Hz\n"
]
}
],
"prompt_number": 35
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 3.4, Page number 29"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#import modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"Z=1; #atomic number of hydrogen\n",
"e=1.6*10**-19; #electron charge(C)\n",
"h=6.625*10**-34; #plank's constant(J-s)\n",
"m=9.1*10**-31; #mass of an electron(kg)\n",
"Eo=8.854*10**-12; #absolute permitivity of free space(F/m)\n",
"n=1; #ground state\n",
"\n",
"#Calculation\n",
"f=(m*Z**2*e**4)/(4*Eo**2*h**3); #frequency(Hz)\n",
"\n",
"#Result\n",
"print \"the frequency is\",round(f/1e+15,2),\"*10**15 Hz\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the frequency is 6.54 *10**15 Hz\n"
]
}
],
"prompt_number": 38
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 3.5, Page number 30"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#import modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"Z=1;\n",
"n=1;\n",
"e=1.6*10**-19; #the charge on electron(C)\n",
"h=6.62*10**-34; #Plank's constant\n",
"Eo=8.854*10**-12; #absolute permitivity of free space(F/m)\n",
"m=9.1*10**-31; #mass of electron(kg)\n",
"\n",
"#calculation\n",
"v=Z*(e**2)/(2*Eo*n*h); #velocity(m/s)\n",
"E=-m*(Z**2)*(e**4)/(8*(Eo*n*h)**2); #energy of hydrogen atom(J)\n",
"f=m*(Z**2)*(e**4)/(4*(Eo**2)*(n*h)**3); #frequecy(Hz)\n",
"\n",
"#Result\n",
"print \"velocity is\",round(v*10**-6,2),\"*10**6 m/s\"\n",
"print \"energy of hydrogen atom\",round(E*10**19,1),\"*10**-19 J\"\n",
"print \"frequecy\",round(f/1e+15,1),\"*10**15 Hz\"\n",
"print \"answer for velocity given in the book is wrong\"\n",
"print \"answer for frequency given in the book varies due to rounding off errors\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"velocity is 2.18 *10**6 m/s\n",
"energy of hydrogen atom -21.7 *10**-19 J\n",
"frequecy 6.6 *10**15 Hz\n",
"answer for velocity given in the book is wrong\n",
"answer for frequency given in the book varies due to rounding off errors\n"
]
}
],
"prompt_number": 24
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 3.8, Page number 38"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#import modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"h=6.625*10**-34; #Plank's constant\n",
"c=3*10**8; #speed of light(m/s)\n",
"E1=10.2; #energy(eV)\n",
"E2=12.09; #energy(eV)\n",
"e=1.6*10**-19; #the charge on electron(C)\n",
"\n",
"#calcualtion\n",
"#principal quantum numbers are 2 & 3 respectively\n",
"lamda1=c*h/(E1*e)*10**10; #wavelength for E1(angstrom)\n",
"lamda2=c*h/(E2*e)*10**10; #wavelength for E2(angstrom)\n",
"\n",
"#Result\n",
"print \"wavelength for 10.2 eV is\",int(lamda1),\"angstrom\"\n",
"print \"wavelength for 12.09 eV is\",int(lamda2),\"angstrom\"\n",
"print \"answers given in the book differ due to rounding off errors\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"wavelength for 10.2 eV is 1217 angstrom\n",
"wavelength for 12.09 eV is 1027 angstrom\n",
"answers given in the book differ due to rounding off errors\n"
]
}
],
"prompt_number": 58
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 3.9, Page number 39"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#import modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"R=10967700; #Rydberg constant(m^-1)\n",
"\n",
"#calculation\n",
"long_lamda=4/(3*R); #as n1=1 and n2=2\n",
"long_lamda=long_lamda*10**10; #long wavelength(angstrom)\n",
"short_lamda=1/R; #as n1=1 and n2=infinity\n",
"short_lamda=short_lamda*10**10; #long wavelength(angstrom)\n",
"\n",
"#Result\n",
"print \"Long wavelength is\",round(long_lamda),\"angstrom\"\n",
"print \"Short wavelength is\",round(short_lamda),\"angstrom\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Long wavelength is 1216.0 angstrom\n",
"Short wavelength is 912.0 angstrom\n"
]
}
],
"prompt_number": 62
}
],
"metadata": {}
}
]
}
|