1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
|
{
"metadata": {
"name": "",
"signature": "sha256:8d579c32fbc82bfc0d050265719851f3d1a9f6f9fcc17df43ae5b1c38cc41c26"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"2: The Electron"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 2.1, Page number 18"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#import modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"E=2400; #electric field intensity(V/m)\n",
"V=90; #potential difference(V)\n",
"e=1.6*10**-19; #the charge on electron(C)\n",
"m=9.12*10**-31; #mass of electron(kg)\n",
"\n",
"#Calculation\n",
"F=e*E; #force on electron(N)\n",
"a=F/m; #acceleration(m/s^2) \n",
"KE=e*V; #Kinetic Energy of particle(J) \n",
"v=math.sqrt(2*KE/m); #velocity of the electron(m/s)\n",
"v=v*10**-6;\n",
"v=math.ceil(v*10**2)/10**2; #rounding off to 2 decimals\n",
"\n",
"#Result\n",
"print \"The force on electron is\",F,\"N\"\n",
"print \"Its acceleration is\",round(a/1e+14,2),\"*10**14 m/s^2\"\n",
"print \"The Kinetic Energy of particle is\",KE,\"J\"\n",
"print \"The velocity of the electron\",v,\"*10**6 m/s\"\n",
"print \"answers for acceleration and velocity given in the book varies due to rounding off errors\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The force on electron is 3.84e-16 N\n",
"Its acceleration is 4.21 *10**14 m/s^2\n",
"The Kinetic Energy of particle is 1.44e-17 J\n",
"The velocity of the electron 5.62 *10**6 m/s\n",
"answers for acceleration and velocity given in the book varies due to rounding off errors\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 2.2, Page number 18"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#import modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"V=900; #potential difference(V)\n",
"B=0.01; #uniform magnetic field(Wb/m^2)\n",
"em=1.76*10**11; #value of e/m(C/kg)\n",
"\n",
"#calculation\n",
"v=math.sqrt(2*em*V); #linear velocity of electron(m/s)\n",
"R=v/(em*B); #radius of the circular path(m) \n",
"R=math.ceil(R*10**3)/10**3; #rounding off to 3 decimals\n",
"v=v*10**-7;\n",
"v=math.ceil(v*10**2)/10**2; #rounding off to 2 decimals\n",
"\n",
"#Result\n",
"print \"The linear velocity of electron is\",v,\"*10**7 m/s\"\n",
"print \"The radius of the circular path is\",R,\"m\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The linear velocity of electron is 1.78 *10**7 m/s\n",
"The radius of the circular path is 0.011 m\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 2.3, Page number 18"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#import modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"d=6*10**-3; #distance between plates(m)\n",
"V=900; #potential difference(V)\n",
"B=0.5; #uniform magnetic field(Wb/m^2)\n",
"Q=1.6*10**-19; #the charge on electron(C)\n",
"R=10.6*10**-2; #circular track radius(m)\n",
"\n",
"#calculation\n",
"v=V/(B*d); #velocity(m/s)\n",
"m=R*Q*B/v; #mass of particle(kg)\n",
"\n",
"#Result\n",
"print \"The mass of particle\",round(m/1e-26,3),\"*10**-26 kg\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The mass of particle 2.827 *10**-26 kg\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 2.4, Page number 19"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#import modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"V=6920; #potential difference(V)\n",
"d=1.3*10**-2; #distance between(m)\n",
"v=1.9*10**-4; #velocity(m/s)\n",
"p=0.9*10**3; #density of oil(kg/m^3)\n",
"n=1.81*10**-5; #coefficient of viscosity(N-s/m^2)\n",
"g=9.81; #accelaration due to gravity(m/s^2)\n",
"\n",
"#calculation\n",
"a=math.sqrt((9*n*v)/(2*g*p)); #radius of the drop(m) \n",
"E=V/d; #electric field(V/m)\n",
"Q=4*math.pi*(a**3)*p*g/(3*E); #value of charge on oil drop(C)\n",
"\n",
"#Result\n",
"print \"The radius of the drop is\",round(a/1e-6,2),\"micro m\"\n",
"print \"The value of charge on oil drop is\",round(Q/1e-19,3),\"*10^-19 C\"\n",
"print \"answers given in the book are wrong\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The radius of the drop is 1.32 micro m\n",
"The value of charge on oil drop is 1.612 *10^-19 C\n",
"answers given in the book are wrong\n"
]
}
],
"prompt_number": 2
}
],
"metadata": {}
}
]
}
|